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The classification of C∗-algebras with K-theoretic invariants has recently been found to

have approximately homogeneous (AH) counterexamples. These counterexamples were

demonstrated to not be isomorphic through the use of the Cuntz semigroup. Moreover,

a property in the Cuntz semigroup (called “almost unperforation”) has been found to

correspond with the “slow dimension growth” property which constitutes something of

a best guess at what might identify which C∗-algebras can be classified K-theoretically.

The theory of the Cuntz semigroup still being rather limited, this thesis sets out to put

the Cuntz semigroup in a framework where it respects inductive limits. More specfically,

a natural category for the Cuntz semigroup is defined, the operation of taking the Cuntz

semigroup of a C∗-algebras is shown to be a functor from the category of C∗-algebras to

this new category, and this functor is shown to respect inductive limits. A few properties

of this new category are also proven.

Additionally, a subsemigroup of the Cuntz semigroup is taken for commutative alge-

bras, and those commutative algebras for which this subsemigroup is the entire Cuntz

semigroup are identified.
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Chapter 1

Introduction

Throughout the history of mathematics, there have been efforts to find similarities be-

tween various mathematical objects, and work on identifying properties which can sim-

plify the task of testing for these similarities. In recent times (relative to the history

of mathematics), there has been a particular interest in the similarities that can be de-

scribed as isomorphism, and in classification theories which can test for this similarity.

Some particularly strightforward examples of this work are the classification of a vector

space by its dimension, and of a free abelian group by its rank. The broad concern of

this thesis, is the classification theory of C∗-algebras.

The classification theory of C∗-algebras has its origins in the theory of von Neumann

algebras (all of which are, in fact, C∗-algebras). In particular, Murray and von Neumann

proposed a notion of equivalence for projections (self-adjoint idempotents), where two

projections p and q were said to be equivalent (which will be denoted p ∼V q) iff there

exists an element v in the algebra, satisfying p = v∗v and q = vv∗.

A C∗-algebra is a self-adjoint *-subalgebra of bounded linear operators on a Hilbert

space, closed in the operator norm. The notion of Murray-von Neumann equivalence

of projections continues to make sense in the more general setting of a C∗-algebra, and
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Chapter 1. Introduction 2

provides the basis of a classification theory, using K-theory, that has only recently been

shown by Toms (in [17]) to fail to distinguish between non-isomorphic C∗-algebras having

certain properties.

Nevertheless, the K-theoretic invariants that have largely motivated the development

of the Cuntz invariant, also being simpler objects, still warrant description here. First,

this description will require use of the notation

M∞(A) =
∞⋃

n=1

Mn(A)

where Mn(A) is identified with the top left n× n block of Mm(A) for m > n.

This allows the Murray-von Neumann semigroup V (A) to be described as the set of

Murray-von Neumann equivalence classes of projections in M∞(A), with direct summa-

tion as the addition operation for the semigroup. K0(A) is then just the Grothendieck

enveloping group for V (A).

The Cuntz semigroup, W (A), was introduced in [3] as a sort of expansion of the

Murray-von Neumann semigroup, producing an expanded (at least in the case where A

is unital and stably finite) analogue of K0(A).

Interest in the Cuntz semigroup has been recently rekindled by work by Rørdam in

[16], comparing order properties in W (A) with stability under tensor multiplication with

the Jiang-Su algebra Z, and with the property of slow dimension growth in approximately

homogeneous (AH) C∗-algebras. Further interest has been generated by Toms’ use of the

Cuntz semigroup to establish the lack of isomorphism between the C∗-algebras he found

to have isomorphic K-theoretic invariants.

The Cuntz semigroup is constructed by considering positive elements in M∞(A),

rather than just projections, and taking equivalence classes as follows:

First, two positive elements a and b will be said to satisfy the preorder relation a - b

when there are sequences {xn} and {yn} in M∞(A) satisfying
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a = lim
n→∞

xnbyn

(in the norm topology). This relation was later proven by Rørdam, in Proposition 2.4 of

[15] to have an equivalent definition that a - b when there is a single sequence {xn} in

M∞(A) satisfying

a = lim
n→∞

xnbx
∗
n

(also in the norm topology). Two positive elements a and b are then said to be equivalent

(denoted a ∼W b) when a - b, and b - a.

It’s worth noting here, that the use of a preorder relation, to define Cuntz equivalence

of positive elements, induces an order relation in W (A) beyond the one arising from

addition. (In fact, Toms and Perera have shown in [14] — in the case that A has stable

rank one — that an equivalence class which is majorized by the same classes under

either order relation, is the equivalence class of a projection!) It’s also worth noting

that if you have two projections, p and q, which are Murray-von Neumann equivalent

(in particular, when p = v∗v and q = vv∗), then they are also Cuntz equivalent (as

v∗qv = v∗vv∗v = pp = p and vpv∗ = vv∗vv∗ = qq = q), though the converse does not

necessarily hold (for example in the Cuntz algebras On, n ≥ 2, all projections are Cuntz

equivalent).

A technical detail which arises when comparing the Murray-von Neumann and Cuntz

semigroups is that of selecting the appropriate ∗-algebra to select positive elements or

projections from. Because any projection in the C∗-algebra of compact operators K has

finite rank, it doesn’t particularly matter whether the Murray-von Neumann semigroup

is constructed from equivalence classes of projections in M∞(A), or from equivalence

classes of projections in the tensor product K ⊗ A (the stabilization of A).
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This is not the case with the Cuntz semigroup. In fact in K itself, infinite rank ele-

ments, such as diag(1, 1/2, 1/3, . . .) form a Cuntz equivalence class of their own. Further,

as the direct sum of any infinite rank positive operator with any other positive operator

will have infinite rank, we get (noting that K⊗C ∼= K) that W (C) ∼= N if we take positive

elements in M∞(C), but if we take our positive elements instead from K ⊗ C, then we

get W (C) ∼= N ∪∞.

Given that, in K, the class of infinite rank positive operators absorbs all the other

classes under addition, the selection of the classes of positive elements in K ⊗ A, as

semigroup elements, does not lend itself well to use in an abelian group. Indeed, with

such a selection, the Grothendieck enveloping group of W (C) (in fact, W (A), for any

C∗-algebra A) would be trivial.

In light of this, the historical decision to define W (A) on M∞(A) would seem to be the

obvious choice. That said, much of the work contained here actually makes more sense in

the context of defining W (A) on K⊗A (though when this occurs, the notation W (K⊗A)

will be used). Alternately, it makes sense to simply view this work as ignoring the case

of non-stable C∗-algebras, and working entirely in the setting of stable C∗-algebras.

In particular, the main result of this thesis, at the end of Chapter 5, uses an alternate

formulation for the Cuntz semigroup (also developed in Chapter 5) which is isomorphic

to W (K⊗A) rather than to W (A). The proof of this isomorphism makes up Chapter 6.

Chapter 2 provides background material from other sources that is used to justify

results in the later chapters.

Chapter 3 begins an examination of the Cuntz semigroup of commutative algebras,

the completion of which uses the alternate formulation described in Chapter 5, and is

provided in Chapter 7.

Chapter 4 defines the appropriate category to consider the Cuntz semigroup as an

object in, and establishes the existence of inductive limits in this category.
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Finally, Chapter 8 describes directions for possible further research, including in par-

ticular, the use of preservation of inductive limits by the Cuntz semigroup functor in this

new framework, as a mechanism for computing the Cuntz semigroup of inductive limit

C∗-algebras which have previously resisted such computations.

Note also that the material in Chapters 4, 5, and 6 is joint work with George Elliott

and Cristian Ivanescu.



Chapter 2

Background and essential results

In [8], Ho proved a result on approximate unitary equivalence of certain positive ele-

ments that is crucial to the description of (a particularly interesting subsemigroup of)

the Cuntz semigroup of commutative C∗-algebras (this result has been revised in [5]).

Another important result, due to Kirchberg and Rørdam, provides a description of a

positive element, approximating another positive element, in a form that is very useful

for describing the Cuntz semigroup in terms of Hilbert C∗-modules (rather than positive

elements), and also in some subsequent results.

Both Ho’s result, and Kirchberg and Rørdam’s result, are presented here, as well as

some material on Hilbert C∗-modules.

2.1 An approximate unitary equivalence for C(X)

Before proceeding with this result, it may be helpful to define the notion of approximate

unitary equivalence between two elements of a C∗-algebra.

Definition Two elements a, b of a C∗-algebra A are said to be approximately unitarily

equivalent if there exists a sequence {un} of unitaries in A (or in its unitization, if A is

6
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not unital) satisfying ||u∗naun − b|| → 0.

Given a continuous diagonal matrix valued function over a topological space X (that

is, a diagonalized element of Mn(C(X))), it is occasionally useful to rearrange the entries

on the diagonal on some open subset of X. Under certain conditions, this can be done:

Lemma 2.1 (Ho). Given f = diag(λ1(x), . . . , λn(x)) ∈ Mn(C(X)), (λi ∈ C(X) for each

i), Y an open subset of X, 1 ≤ j < k ≤ n, and λj(y) = λk(y)foreveryy in the boundary of

Y , then f is approximately unitarily equivalent to g = diag(λ1(x), . . . , λk(x), . . . , λj(x), . . . , λn(x)).

Proof. Let {Un} be an increasing sequence of closed sets contained in Y , whose union

is Y itself (in particular, take Un = {y ∈ Y ; |λj(y) − λk(y)| ≥ 1/n}), and let {Vn} be

a similar sequence of open sets covering the complement of the closure of Y . Now take

v(0) to be the identity on Mn, v(1) to be the matrix that exchanges the jth and kth

elements, and v : [0, 1] → Mn(C) a path of unitaries joining v(0) and v(1). Now let hn

be a continuous [0, 1]-valued function on X, equal to 0 on Vn and 1 on Un. Finally, take

un to be the isomorphic image in Mn(C(X)) of v ◦ hn (in C(X, Mn(C))).

Now the unitary path v is can be chosen so that any unitary v(i) along that path

will satisfy ||v(i)∗mv(i)− v(e)∗mv(e)|| ≤ |λ(j)− λ(k)| for e ∈ {0, 1}. Because un differs

from the desired limit operator only on regions where |λj(x)− λk(x)| < 1/n, we get that

||u∗nfun − g|| < 1/n, so g is approximately unitarily equivalent to f .

2.2 A useful approximation

This result by Kirchberg and Rørdam is taken from [10], and requires some background

of its own (which is taken from the same, except where noted).

First, the notation needs to be introduced for a positive a ∈ A that (a − ε)+ is the

positive part of the self-adjoint element (a− ε) (note that when A is not unital, ε needs
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to be taken from the unitization of A). This can be taken two ways, both of which

give that (a − ε)+ ∈ A (and more importantly, give the same value); the first is simply

to apply functional calculus to (a − ε), using the function hε : R → R+ defined by

h(t) = max(t− ε, 0). The other is simply to take (a− ε)+ = 1
2
[(a− ε) + |a− ε|] (noting

that this still uses functional calculus to take the square root of (a− ε)∗(a− ε). It should

also be noted that:

(a− ε1 − ε2)+ =
(
(a− ε1)+ − ε2

)
+
, and ||(a− ε)+ − a|| ≤ ε

hold for all a ∈ A+ and all ε, ε1, ε2 ≥ 0.

Additionally, we will need the polar decomposition; that every element x in a C∗-

algebra A has a polar decomposition x = u|x|, where u is a partial isometry in the

enveloping von Neumann algebra A∗∗ (where A∗ is the commutant of A, i.e. the C∗-

algebra of bounded operators on Hilbert space which commute with every element of A,

when A is considered as a subalgebra of the algebra of bounded operators on Hilbert

space). Additionally, for all elements y in the hereditary sub-C∗-algebra x∗Ax (of A∗∗),

the elements uy, yu∗, and uyu∗ belong to A. Also, the mapping y 7→ uyu∗ defines an

isomorphism from x∗Ax onto xAx∗.

To prove the approximation result, we also need the following two results from [12]

Lemma 2.2 (Kirchberg, Rørdam). Let x, y and a be elements of a C∗-algebra A such

that a ≥ 0 and x∗x ≤ aα, yy∗ ≤ aβ with α + β ≥ 1. Then the sequence with elements

un = x( 1
n

+ a)−1/2y is norm convergent to an element u in A with ||u|| ≤ ||a(α+β−1)/2||.

Proof. Put dnm = ( 1
n

+ a)−1/2 − ( 1
m

+ a)−1/2. Then

||un − um||2 = ||xdnmy||2 = ||y∗dnmx∗xdnmy||

≤ ||y∗dnmaαdnmy|| = ||aα/2dnmy||2

= ||aα/2dnmyy∗dnmaα/2||

≤ ||aα/2dnmaβdnmaα/2|| = ||dnma(α+β)/2||2.
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From spectral theory, we see that the sequence {( 1
n
+a)−1/2a(α+β)/2} is increasing and thus

by Dini’s theorem uniformly convergent to a(α+β−1)/2. Consequently ||dnma(α+β)/2|| → 0

so that {un} is norm convergent to an element u in A. We have

||un|| = ||x(
1

n
+ a)−1/2y|| ≤ ||aα/2(

1

n
+ a)−1/2aβ/2|| ≤ ||a(α+β−1)/2||,

reasoning as above; which shows that ||u|| ≤ ||a(α+β−1)/2||.

Proposition 2.3 (Kirchberg, Rørdam). Let x and a be elements in a C∗-algebra A

such that a ≥ 0 and x∗x ≤ a. If 0 < α < 1
2

there is an element u in A with ||u|| ≤ ||a 1
2
−α||

such that x = uaα.

Proof. Define un = x( 1
n

+ a)−
1
2 a

1
2
−α. From Lemma 2.2 we see that {un} is convergent to

an element u in A with

||u|| ≤ ||a
1
2
(1+1−2α−1)|| = ||a

1
2
−α||.

Furthermore

||x− una
α||2 = ||x[1− (

1

n
+ a)−1/2a1/2]||2

≤ ||a1/2[1− (
1

n
+ a)−1/2a1/2]||2 → 0

as n →∞ by spectral theory (Dini’s theorem). It follows that x = uaα.

Now we can proceed to Kirchberg and Rørdam’s most useful (for this thesis) result:

Lemma 2.4 (Kirchberg, Rørdam). Let A be a C∗-algebra, let a, b be positive elements

in A, and let ε > ||a − b|| be given. Then there is a contraction d in A such that

dbd∗ = (a− ε)+.

Proof. For each r > 1 define gr : R+ → R+ by gr(t) = min(t, tr). Observe that gr(b) → b

as r → 1. Choose r > 1 such that (ε1 =) ||a−gr(b)|| < ε and set b0 = gr(b). Then b0 ≤ b,



Chapter 2. Background and essential results 10

b0 ≤ br, and a−ε1 ≤ b0. Find a positive contraction e in C∗(a) with e(a−ε1)e = (a−ε)+.

Then (a− ε)+ ≤ eb0e. Put x = b
1/2
0 e and let x = v|x| be the polar decomposition for x,

where v is a partial isometry in A∗∗. As (a − ε)+ ≤ eb0e = x∗x (and is therefore in the

hereditaty sub-C∗-algebra x∗Ax), the element y = v(a−ε)
1/2
+ belongs to A. y∗y = (a−ε)+,

and

yy∗ = v(a− ε)+v∗ ≤ vx∗xv∗ = xx∗ = b
1/2
0 e2b

1/2
0 ≤ b0.

Now, following the proof of Proposition 2.3, put dn = y∗( 1
n

+ br)−1/2b(r−1)/2. Because

yy∗ ≤ b0 ≤ br, Lemma 2.2 applies (with α = 1 and β = (r − 1)/r) and shows that

{dn}∞n=1 is a Cauchy sequence in A. Let d be the limit of this Cauchy sequence. As in

the proof of Proposition 2.3, we have db1/2 = y∗, so that dbd∗ = y∗y = (a − ε)+. Since

yy∗ ≤ b0 ≤ b we get

d∗ndn ≤ b(r−1)/2(
1

n
+ br)−1/2b(

1

n
+ br)−1/2b(r−1)/2 ≤ 1.

Hence ||dn|| ≤ 1 for each n which entails that d is a contraction.

2.3 Hilbert C∗-modules

Given that the last result is to be used in formulating the Cuntz semigroup in terms

of Hilbert C∗-modules, it will be helpful in making such a formulation, to have some

background on Hilbert C∗-modules. Naturally, we begin by defining what a Hilbert

C∗-module is.

Definition Given a C∗-algebra A, a module E over A is a Hilbert C∗-module over A (also

called a Hilbert A-module) iff it is equipped with an A-valued inner product satisfying

the conditions:

1. 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for every x, y, z ∈ E; α, β ∈ C
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2. 〈x, ya〉 = 〈x, y〉a for every x, y ∈ E; a ∈ A

3. 〈y, x〉 = 〈x, y〉∗ for every x, y ∈ E

4. 〈x, x〉 ≥ 0 for every x ∈ E

5. 〈x, x〉 = 0 iff x = 0

and is also complete under the norm ||x|| = ||〈x, x〉1/2||.

It then stands to reason that we can consider A as a module over itself, assign it an

inner product 〈a, b〉 = a∗b and have that it is in fact a Hilbert A-module. Likewise, the free

module A⊕A can be made a Hilbert A-module with the inner product 〈a1⊕a2, b1⊕b2〉 =

a∗1b1 + a∗2b2, and make similar constructions for any finite direct sums of A.

Definition Carrying this construction further, we can define HA to be the module con-

sisting of square summable series in
⊕∞A, that is those {ai} for which the series

∑
i a
∗
i ai

is convergent in A.

This construction then admits the following theorem, due to Kasparov in [9], which

will be reproduced here without proof.

Theorem 2.5 (Kasparov). If A is an algebra with a continuous group action and E is

a countably generated Hilbert A-module, then E ⊕HA
∼= HA.

The remaining material on Hilbert C∗-modules to be used in this thesis follows, and

is from [11] by Lance.

Our first task here is to define a adjointable endomorphism on a Hilbert A-module

E. We say that t : E → E is adjointable iff there is a map t∗ satisfying

〈tx, y〉 = 〈x, t∗y〉 x, y ∈ E
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Noting that t is necessarily A-linear, and that it necessarily has an (adjointable)

adjoint. For each x in the unit ball E1 of E, we can define a function fx : E → A by

fx(y) = 〈tx, y〉. Then ||fx(y)|| ≤ ||t∗y|| for all x ∈ E1. It follows from the Banach-

Steinhaus theorem that the set {||fx|| : x ∈ E1} is bounded, and this shows that t is

bounded.

Referring to the ∗-algebra of adjointable endomorphisms on E as L(E), we have that

it is a subalgebra of the algebra of all bounded operators on E. Noting that the limit of

any norm-convergent sequence of adjointable operators {ti} in L(E) has as an adjoint, the

limit of the sequence {t∗i } it follows that L(E) is closed in the operator norm. Moreover,

we have that

||t∗t|| ≥ sup{||〈t∗tx, x〉|| : x ∈ E1}

= sup{||〈tx, tx〉|| : x ∈ E1} = ||t||2

so L(E) is a C∗-algebra. Another C∗-algebra of endomorphisms on E that we’ll want

to consider is the algebra of compact endomorphisms, which we’ll now define.

First, we need to define a finite rank endomorphism on E to be an endomorphism

xy∗ with x, y ∈ E described by xy∗(z) = x〈y, z〉. Also taking u, v ∈ E, we get that finite

rank endomorphisms multiply to give finite rank endomorphisms by

uv∗
(
xy∗(z)

)
= uv∗(x〈y, z〉) = u〈v, x〈y, z〉〉

= u〈v, x〉〈y, z〉 = u
(
〈y〈x, v〉, z〉

)
= u

(
y〈x, v〉

)∗
(z)
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and additionally that each finite rank endomorphism xy∗ has the finite rank endomor-

phism yx∗ as its adjoint because

〈xy∗(z), w〉 = 〈x〈y, z〉, w〉 = 〈z, y〉〈x, w〉

= 〈z, y〈x, w〉〉 = 〈z, yx∗(w)〉.

Consequently the closed linear span of these finite rank endomorphisms on E forms

a C∗-algebra which we’ll denote by K(E), and whose elements are called the compact

endomorphisms on E.

Additionally, taking t in L(E), we have that t(xy∗) = (tx)y∗ and that (xy∗)t = x(t∗y)∗,

which also gives us that K(E) is a (closed two-sided) ideal in L(E).

A note on the compact endomorphisms defined above (not from [11]) is that if E is a

Hilbert subA-module of F , and t is a compact endomorphism on E, then expressing t as a

convergent series of finite rank endomorphisms
∑

xiy
∗
i on E, each of these endomorphisms

is also finite rank on F , and consequently, t is also a compact endomorphism on F (in

fact, it is exactly the endomorphism on F defined by taking t on E, and otherwise

projecting down to E, so that the resulting endomorphism would be uniformly 0 on

the quotient F/E). Using the quotient construction for t on F , we see that if s is a

compact endomorphism on F satisfying s ≤ t, then s must also take the value 0 on

F/E, making it the extension of some compact endomorphism on E; this means that the

natural extensions of K(E) on F form a hereditary sub-C∗-algebra of K(F ).

Finally a more general result, useful for describing Hilbert C∗-modules as closed right

ideals is the Cohen factorization given by Pedersen in [13]. To use this, we must first note

that each Hilbert C∗-module is a Banach module by the construction ||x|| = ||〈x, x〉||1/2

and also define the notion of an algebra A acting non-degenerately on a module E to hold

when AE is dense in E. The following are taken from [13] and are presented without

proof.



Chapter 2. Background and essential results 14

Theorem 2.6 (Pedersen). Let A be a C∗-algebra acting non-degenerately on a left

Banach A-module E. Then each vector ξ in E can be factored as ξ = xη for some η in

E and x in A+ with ||x|| ≤ 1. Moreover, for each ε > 0 we can arrange that ||ξ− η|| < ε.

Theorem 2.7 (Pedersen). Let A be a C∗-algebra acting non-degenerately on a left

Banach A-module E, and let {ξn} be a sequence in E such that
∑
||ξn||p < ∞ for some

p ≥ 1 (respectively lim ||ξn|| = 0). There is an x in A+ with ||x|| ≤ 1, and a sequence

{ηn} in E with
∑
||ηn||p < ∞ (respectively lim ||ηn|| = 0), such that xηn = ξn for

all n. Moreover, for each ε > 0 we can arrange that
∑
||ξn − ηn||p ≤ ε (respectively

sup ||ξn − ηn|| ≤ ε).



Chapter 3

The Commutative case

An obvious subject for initial study of the Cuntz semigroup would be its value on com-

mutative C∗-algebras. Since either formulation of the Cuntz semigroup is stable under

tensor products with matrix algebras, this additionaly provides us with information on

the inductive limit building blocks for AH algebras.

To examine this, we’ll first investigate the elements of the Cuntz semigroup arising

from positive elements in the algebra C(X) itself, and then look at the subsemigroup

this generates in the entire Cuntz semigroup. The first observation to make is when one

positive element of C(X) is less than another in the semigroup.

Proposition 3.1. Given a, b ∈ C(X), it holds that a - b iff {x ∈ X; a(x) = 0} ⊇ {x ∈

X; b(x) = 0} (i.e. the zero set of b is a subset of the zero set of a).

Proof. For the forward direction, consider that the conclusion fails, i.e. that there is some

x ∈ X satisfiying a(x) 6= b(x) = 0. Taking dn(x) = (c∗nbcn)(x) = cn(x)b(x)cn(x) = 0 for

any sequence cn, it becomes clear that the value of the limit of any such sequence at

x will also be 0, preventing equality with a, and providing the forward direction by

contraposition.

For the reverse direction, take cn(x) = min(
√

a(x)/ max(b(x), 1
n
), n). Then (c∗nbcn)(x) =

15
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min(a(x)/max(b(x), 1
n
), n2)b(x) = min(a(x), a(x)nb(x), n2b(x)) where the latter values,

of which the minimum is taken, get big as n does, so they will eventually exceed a(x),

resulting in a limit of a for c∗nbcn, which gives a � b.

Following directly from this, we have the following:

Lemma 3.2. Given a, b ∈ C(X), it holds that a and b are Cuntz equivalent iff a and b

have identical zero sets (i.e. {x ∈ X; a(x) = 0} ≡ {x ∈ X; b(x) = 0})

The next obvious step here, is to look at the subsemigroup of W (C(X)) generated by

such equivalence classes of positive elements in C(X) itself (rather than those from some

matrix over C(X)), which we’ll call U(C(X)). The first step here is to represent the

equivalence classes of positive operators with the characteristic functions of the open sets

on which they are nonzero (these functions are in the classes they represent whenever

they’re actually in C(X) – for the purposes of actually working in C(X) they can be

taken to fall off to 0 on a region suitably close to their boundary). It then remains to

determine how semigroup addition (i.e. taking the equivalence class of direct sums of

representative elements) acts on these elements.

First, it helps to ignore the equivalence classes, and just consider the direct sums.

These can be represented as open sets in X × N (or N ∪ {∞} if the Cuntz semigroup is

defined in terms of K ⊗ A rather than M∞(A)). In particular the pair (x, n) will be in

the set representing some sum of rank-one classes, if x is nonzero in the nth summand.

Ho’s result from [5] (included as Lemma 2.1) then allows us to characterize U(C(X)) as

follows:

Theorem 3.3. The trivial subsemigroup U(X) of the Cuntz semigroup, consisting of

Cuntz classes generated by elements of C(X), is isomorphic as a semigroup to the semi-

group of lower-semicontinuous N-valued functions (or (N∪{∞})-valued functions, in the

stable case) on X, with pointwise addition.
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Proof. First, observe that for any n, the set of x for which (x, n) is in the subset described

above is an open subset of X. Now for any such subset of X × N, assign to x the

number of distinct n for which (x, n) is in the subset. More succinctly, define the lower

semicontinuous function to be the rank of the fibre on X.

It remains to show that any two subsets of X ×N which have the same counts on all

x ∈ X are equivalent. This is done by reducing them to a canonical form. To do this, first

consider when a subset S contains points of the form (x, n + k), where it doesn’t contain

points of the form (x, n). Letting Yi denote the complement of the ith summand’s zero

set (i.e. Yn+k is the set of x for which (x, n+k) is in S) and Zi the ith summand’s zero set,

note that ∂Yn+k ∩Zn can be completed, as a path enclosing Yn+k ∩Zn by taking sections

through Yn ∩ Yn+k. Because Yn+k is open, ∂Y ⊆ Zn+k, so representatives of the nth and

n + 1st summands can be chosen which are equal on this entire path. This allows us

to use Lemma 2.1 to obtain an approximately unitarily equivalent (and therefore Cuntz

equivalent) positive operator whose representation as a subset of X×N does not contain

points (x, n + k) where (x, n) is not also contained (though there still may be holes at

levels other than n).

Given an n, this equivalence can then be used to remove any holes (i.e. points

belonging to Zn ∩ Yn+k, k > 0) by sequentially working up through the possible values

of k. Repeating this argument for all n ∈ N, a canonical form C is produced where

(x, n) ∈ C exactly when (x, i) occurs in C for at least n distinct values of i, so all sums

of Cuntz classes in C(X) sharing these counts are equivalent.

That sums of Cuntz classes not having the same canonical form are not equivalent is

a direct consequence of the fact that the rank of a product of two matrices, is always less

than or equal to the lesser of the ranks of each of the matrices, so an element with greater

fibre rank at any given point cannot be majorized by an element with lesser fibre rank, in

the Cuntz semigroup, and therefore cannot be equivalent. This also establishes that the
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most complete apparent order relation for the characterization of U as N ∪ {∞}-valued

functions is, in fact, the Cuntz order relation

Now given the characterization of this subsemigroup, it doesn’t seem unreasonable

that U(C(X)) contains all the information that X does ad therefore, uniquely determines

X (and therefore C(X)) up to homeomorphism (or isomorphism). Of course, since U is

only defined on commutative C∗-algebras, it seems most productive to examine how it

might be possible to isolate U within W , in order to use it to classify commutative (or

perhaps even homogeneous) C∗-algebras. That said, it is still necessary to first determine

X from U(C(X)). To do this, it is helpful to isolate the elements of rank one (i.e. the

characteristic functions of open sets), and to do so without recourse to structure not

inherent to the (ordered) semigroup.

Definition An element of an ordered semigroup will be called large either if it can be

expressed as a sum of n copies (n > 1) of some nonzero element of the semigroup, or if is

greater than such a sum. The remaining elements of the semigroup will be called small.

Proposition 3.4. An function in U(C(X)) (which we recall is isomorphic to the semi-

group of lower semicontinuous N(∪{∞})-valued functions) is small iff it only takes the

values 0 and 1.

Proof. For the forward direction, consider f ∈ U(C(X)) where f(x) = n > 1 for some

x ∈ X. Then S = {x ∈ X; f(x) = n} is a nonempty open set in X. Considering the

characteristic function of S; χS ∈ U(C(X)), the sum of n copies of χs is less than or

equal to f , so f is large.

For the reverse direction, observe that any nonzero element of U(C(X)) takes a

nonzero value m on some point in X. The sum of n copies of this element will be

nm > m ≥ 1 at that point, and any element of U(C(X)) greater than this sum will
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also take a value greater than 1 at that point, so every function in U(C(X)) taking only

values from {0, 1} must be small.

It follows from this that all the small elements of U(C(X)) are the characteristic

functions of open sets in X. Since χX is the greatest such function, let’s use 1U to denote

the greatest small function in U(C(X)).

Now when C(X) is separable, X is Hausdorff, so any singleton {x} is closed in X

and, more importantly Sx = X\{x} is open. Additionally, 1U is the only small function

greater than χSX
and any small function whose only majorizing small function is 1U is

the characteristic function of Sx for some x ∈ X.

Consequently, we can construct a set X ′ = {f ∈ U(C(X)); f is small, 1U > f , and

g > f ⇒ g = 1U} with the obvious bijection from X, ι : x 7→ χSx . Also, since any subset

of X not containing x is a subset of X\{x}, any open subset V of X not containing x

will satisfy χV ≤ ι(x). This allows a topology T to be defined on X ′ by V ∈ T iff there

is a small f ∈ U(C(X)) where x ∈ V ⇔ f � x. Since f is the characteristic function of

an open subset of X, V is simply the image of that open set under ι, so the open sets on

X ′ are exactly the images under ι of the open sets on X. Thus

Theorem 3.5. If X is T0, then X is homeomorphic to the space X ′ of maximal small

elements in the trivial subsemigroup U(C(X)) of the Cuntz semigroup W (C(X)) of the

commutative C∗-algebra C(X).

This also gives

Corollary 3.6. C(X) is isomorphic, as a C∗-algebra, to C(X ′), so the trivial subsemi-

group classifies commutative C∗-algebras up to isomorphism.

This gives further that if U(C(X)) is isomorphic to U(C(Y )) as an ordered semigroup,

then C(X) and C(Y ) must be themselves isomorphic.
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So in the cases where U(C(X)) can be isolated within W (C(X)) using only the semi-

group structure, W (C(X)) provides classification. If W (C(X)) contains no nontrivial

(i.e. not within U(C(X))) classes of positive operators, then isolation isn’t even neces-

sary.

In particular, Pedersen and Grove already identified a set of conditions, (in Theorem

5.6 of [7]) on a topological space X under which all normal (and therefore all positive)

elements in M∞(C(X)) are unitarily equivalent (and therefore Cuntz equivalent) to a

diagonal element (i.e. an element of U(C(X))). Their theorem follows (verbatim, without

proof).

Theorem 3.7 (Grove, Pedersen; 1984). For a compact Hausdorff space X the fol-

lowing conditions are equivalent:

1. For each n and every commutative C∗-subalgebra A of C(X)⊗Mn, which is count-

ably generated over the center, there is a unitary U in C(X)⊗Mn such that UAU∗

consists entirely of diagonal elements

2. (a) X is sub-Stonean;

(b) dim X ≤ 2;

(c) H1(X0, Sm) is trivial for every closed subset X0 of X and all m;

(d) H2(X0, Z) is trivial for every closed subset X0 of X.

Unfortunately, the set of restrictions imposed by this theorem is rather strict, and

met by very few commutative algebras of general interest (e.g. any metrizable space is

not sub-Stonean).

Fortunately, for U(C(X)) to be the whole of W (C(X)) it is only necessary to diagonal-

ize positive operators (rather than all normal operators), and further, Cuntz equivalence

is a considerably weaker condition than unitary equivalence. In particular, when X is
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a CW -complex of dimension 1, then W (C(X)) can be shown to be equal to U(C(X)),

however the proof of this uses machinery to be explained later in this thesis, and will

come later.



Chapter 4

A Suitable category

Even with indications that commutative C∗-algebras may be classified by the Cuntz

semigroup, viewed strictly as a semigroup, it still has considerable deficiencies. One such

deficiency arises when considering the Cuntz semigroup of an inductive limit algebra.

As an example, consider the UHF -algebra A, which has K0(A) = Q. Given any

x ∈ R+, we can construct an increasing (in the C∗-algebra) sequence of projections pn

such that limn→∞[pn] = x (where [pn] is the Murray-von Neumann equivalence class of

pn considered as an element of Q ⊆ R). Then

∞∑
n=1

pn/2
n

is a positive element not (Cuntz) equivalent to any projection in A (even if x is rational—

consider the closed right ideals generated by the given sum versus those generated by

a single projection with trace x; the sum’s ideal can be seen as countably generated by

all the projections smaller than the corresponding single projection and therefore not

isomorphic to the single projection’s ideal, so the operators can’t be Cuntz equivalent).

A being AF, we also get that all positive elements can be approximated by such

sequences of projections, so we have that W (A) = (Q + R)+ (this notation being used to

describe the disjoint union of the strictly positive real numbers, and the positive rational

22
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numbers with the usual addition on each of these subsets, and addition of one element

of each yielding the expected numerical sum in the R portion). This is uncountable,

but the Cuntz semigroups of all the building blocks are countable (simply being N, since

the building blocks are matrix algebras), it is apparent that algebraic structure alone

cannot produce an inductive limit semigroup, for the building block semigroups, which

is isomorphic to the Cuntz semigroup of the inductive limit algebra.

Drawing on the analogy to Q and R suggested by the example of A however, there

appears to be promise in topological properties of the Cuntz semigroup. Even more

promising is that such topological properties can be identified because the Cuntz semi-

group comes equipped with an order relation (the preorder relation used in its definition,

after the quotient is taken by equivalence), and that this order relation compares more

elements than the usual semigroup ordering (i.e. x ≤ y iff there is a z with y = x + z;

indeed, it is shown in [14] that in a C∗-algebra with stable rank one, the set of Cuntz

classes majorizing a class x agree iff x is the equivalence class of a projection).

Before listing the properties that define the desired category, it is worth noting again

that the material in this chapter, and the next two, is joint work, published with George

Elliott and Cristian Ivanescu in [2].

4.1 Defining the category C

In order to refine the order properties so that, e.g. the limit rationals in R+ from the

example above are kept distinct from the rational images of building block elements (in

Q+), a notion of compact containment needs to be introduced.

Definition An element of x of an ordered semigroup S is said to be compactly contained

in y (or ”way less than y”; denoted x � y) iff whenever y1 ≤ y2 ≤ · · · is an increasing

sequence with supremum greater than or equal to y, there is an n for which x ≤ yn.
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Remark It is worth noting here first that x � y implies x ≤ y, as well as that either

of x ≤ y � z or x � y ≤ z imply x � z. For the first implication, any sequence {yi}

with y as a supremum will have, for some j, x ≤ yj ≤ y. For the second, given a series

{zi} increasing to a supremum of at least z, y � z gives a j so that x ≤ y ≤ zj, so

the same j serves to demonstrate that x � z. For the final implication, any increasing

sequence having a supremum of at least z, has a supremum of at least y, and so satisfies

the condition of eventually exceeding x that establishes x � z. These implications are

used quite often in the rest of this chapter.

Definition We also say that a sequence {yn} is rapidly increasing when y1 � y2 � · · ·

Definition The category C consists of objects which are semigroups with zero, an or-

der relation compatible with addition (though not necessarily arising from it), and the

following additional properties:

1. every increasing sequence (or countable, upward directed set) has a supremum;

2. for every element y, the set of elements compactly contained in y is upward directed,

and contains a rapidly increasing sequence, of which y is the supremum;

3. the operation of taking suprema of countable, upward directed sets is compatible

with addition (i.e. for two such sets S1 and S2, sup(S1 + S2) = sup S1 + sup S2)

4. the relation of compact containment is compatible with addition (i.e. x1 � y1 and

x2 � y2 implies x1 + x2 � y1 + y2).

and arrows which are order-preserving semigroup homomorphisms between these

objects.
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4.2 Membership of candidate inductive limits in C

The category having now being defined, recall that the motivation for this category was

that the operation of taking the Cuntz semigroup from a C∗-algebra to it be a functor

which preserves inductive limits. In order for this to make sense, it is necessary to have

a well-defined notion of inductive limits within C.

To do this, first take, for a sequence

S1 → S2 → S3 → · · ·

in C, a preliminary semigroup S ′ of eventually increasing sequences {s1, s2, s3, . . .}

(where sn ∈ Sn for every n, and eventually increasing is taken to mean that, there is a k

such that for any i ≥ k, the image of si in Si+1 is less than or equal to si+1), and with

addition defined by

{si}+ {ti} = {si + ti}

.

First, we’ll want to define the increasing part of an eventually increasing sequence

{si} as {si}i≥k where k is the smallest number for which the image of si in Si+1 is less

than or equal to si+1 for any i ≥ k.

Now we can assign to this semigroup the preorder relation {si} - {ti} when, for any

s ∈ Si with s � si, when si is in the increasing part of {si}, there is a j > i so that tj

is in the increasing part of {ti} and the image t, of s in Sj satisfies t � tj. Now take the

candidate semigroup S to be the quotient of S ′ by the equivalence relation produced by

this preorder (i.e. {si} - {ti} and {ti} � {si}). This naturally requires some checking.

Proposition 4.1. The relation: {si} - {ti} when, for any s ∈ Si with s � si where

si is in the increasing part of {si}, there is a j in the increasing part of {ti}, j > i so
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that the image t of s in Sj satisfies t � tj; is a preorder relation (i.e. it is reflexive and

transitive).

Proof. That {si} - {si} follows directly from taking j = i. For transitivity, take {si} -

{ti} and {ti} - {ri}. Taking s ∈ Si with s � si and si in the increasing part of {si},

we get a j in the increasing part of {ti} so that the image t of s in Sj satisfies t � tj.

Further, we get that the image r of t in Sk (again, rk in the increasing part of {ri})

satisfies r � rk. Since r is also the image of s, then {si} - {ri}, so the relation is

transitive and a preorder.

Now it also helps, in order to have an ordered semigroup, that addition be well-defined,

and compatible with the order structure. In particular, note that if si ≤ si+1 and ti ≤ ti+1,

then compatbility of addition with the ordering in Si+1 gives si + ti ≤ si+1 + ti+1, so it

remains to check that

Proposition 4.2. If {si}, {s′i}, {ti}, and {t′i} are eventually increasing sequences in {Si}

as described above, and if {si} - {s′i} and {ti} - {t′i}, then {si + ti} - {s′i + t′i}.

Proof. Take s ∈ Si (again, in the increasing part) so that s � si+ti, in order to eventually

show that there is a j (in the increasing part) so that the image of s in Sj (which will

also be called s from now on) satisfies s � s′j + t′j.

Now because of the second property assigned to objects in C, sequences {sn
i } and

{tni }, with suprema si and ti respectively, can be taken in Si, satisfying

s1
i ≤ s2

i ≤ · · · � si and t1i ≤ t2i ≤ · · · � ti

(where the requirement sn
i � si and tni � ti follows from the ability to take rapidly

increasing sequences). Additionally, compatibility between addition, the order relation,

and suprema in Cu establishes that
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s1
i + t1i ≤ s2

i + t2i ≤ · · · ≤ si + ti with si + ti = sup
n
{sn

i + tni }.

So since s � si + ti, then there is an n so that s ≤ sn
i + tni . Also, because we

have sn
i � si, tni � ti, {sk} ≤ {s′k}, and {tk} ≤ {t′k}, the definition of comparison

between sequences gives the existence of a j (in the increasing parts of both {s′i} and

{t′i}) satisfying both sn
i � s′j and tni � t′j. Thus compatibility of addition and order

gives us

s ≤ sn
i + tni ≤ s′j + t′j

Which establishes that {si + ti} - {s′i + t′i}.

Having established S ′ to be a preordered semigroup, whose preorder is compatible

with addition, the quotient S is a well-defined ordered semigroup, whose inclusion as an

object in C can now be checked. To do this, we start with the following:

Proposition 4.3. Every eventually increasing sequence {s1, s2, . . .} with si ∈ Si is equiv-

alent to an eventually rapidly increasing sequence.

Proof. For each i in the increasing part, we have a rapidly increasing sequence {sn
i }

in Si, which has si as a supremum. Because these sequences are rapidly increasing, a

subsequence of {sn
i+1} can be chosen so that the nth term of this sequence is always

greater than or equal to sn
i . Starting this process with the {sn

k+1} (where sk is the first

term of the rapidly increasing part of {si} and continuing with each subsequent sequence,

yields a sequence of sequences which is increasing over i and rapidly increasing over n,

so consider {sn
i } to have been chosen to meet these conditions. Constructing a Cantor

diagonal sequence {ti} by taking {ti} = {si
i} (for i in the increasing part of {si}, and

arbitrary values for lower values of i) so that si
i � si+1

i ≤ si+1
i+1 provides that tt � ti+1,

i.e. that {ti} is eventually rapidly increasing.



Chapter 4. A Suitable category 28

To get that {si} - {ti}, first take s and i (in the increasing part; note that choosing

suitably large elements for the arbitrary part of {ti}, gives the same initial index for the

increasing parts of both sequences) so that s � si, that is, so there is a j satisfying

s ≤ sj
i . Taking k = max(i, j) + 1, we get

s ≤ sj
i � sk

i ≤ sk
k = tk

and so with s � tk, we have {si} - {ti}.

For {ti} - {si}, taking s and i (again, i in the increasing part) so that s � ti, it

need only be noted that ti = si
i, that is the ith term of a sequence rapidly increasing

to a supremum of si, so s � ti � si, giving {ti} - {si}, which further gives that

the eventually rapidly increasing sequence {ti} is equivalent to the eventually increasing

sequence {si}.

Proposition 4.4. If {si} � {ti}, and {si} is equivalent to a eventually rapidly increasing

sequence {s′i} with rapidly increasing part {s′i}i≥k, then {ti} is equivalent to an eventually

rapidly increasing sequence {t′i} which is rapidly increasing on {t′i}i≥k.

Proof. Noting first that Proposition 4.3 provides an eventually rapidly increasing se-

quence equivalent to {ti}, consider the sequence provided to be eventually rapidly in-

creasing, with rapidly increasing part {ti}i≥n. {ti} already being rapidly increasing for

i ≥ k if n ≤ k, we need only consider the case where n > k. In this case, note that

sk � sk+1 and {si} � {ti}, so there is a j ≥ n with sk � tj. Now recall that in Sk, there

is a rapidly increasing sequence

s1
k � s2

k � s3
k � · · · � sk � tj

so taking the images first j − k terms of this sequence in Sk through Sj−1, we can get

the eventually rapidly increasing sequence

s1, s2, ...sk − 1, s1
k � s2

k � · · · � sj−k
k � tj � tj+1 � · · ·
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which is rapidly increasing for i ≥ k, and is equivalent to {ti}, as desired.

Lemma 4.5. The ordered semigroup S is an object in C, that is, it is an ordered semi-

group, with zero, whose order relation is compatible with addition, has suprema of count-

able, upward directed sets, has upward directedness of the set of elements contained in

any given element (and a rapidly increasing sequence therein, whose supremum is the

given upper bound), and has compatibility between addition, taking suprema, and the �

ordering.

Proof. To get a zero element for S, simply take the equivalence class of the sequence

{0, 0, · · · }, which is a zero element of S ′. That the order relation is compatible with

addition also follows from the work done with the preorder on S ′.

To get that each increasing sequence s1 ≤ s2 ≤ · · · within S has a supremum, take

eventually rapidly increasing representatives {s1
n} - {s2

n} - · · · (si
n ∈ Sn) for each of

si ∈ S, and use Proposition 4.4 to get that they’re all rapidly increasing on the same

set of indices (i ≥ k). Repeating the subsequence construction in Proposition 4.3 (but

taking the subsequences 1 entry further along each of the original sequences to ensure

compact containment), we can get sequences satisfying

s1
i � s2

i � · · ·

for i ≥ k. This also gives rapid increasingness of the diagonal sequence

s1
k+1 � s2

k+2 � · · ·

the class of which, we’ll call s, and take as our candidate for the supremum of s1 ≤ s2 ≤

· · · .

To establish that s is an upper bound for {si}, simply note that for any i and n,

si
n ≤ sm

k+m for m = max(i, n), so si ≤ s. Then considering t = (t1, t2, . . .) % si for every i,

taking r � si
i (the term of {si

i}, in Si with r), that si
i is a term in si, and si - t gives the
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existence of a j in the increasing part of {ti} so that r ≤ tj, which means that {si
i} - t,

so s is the supremum for {si}.

Next we need that every element of S is the supremum of a rapidly increasing sequence

(in S). Representing s ∈ S by the eventually rapidly increasing sequence {si} with

si ∈ Si and rapid increasingness on i ≥ k, we construct a candidate sequence, from the

equivalence classes represented by

{sk, sk, sk, . . .}, {sk, sk+1, sk+1, . . .}, {sk, sk+1, sk+2, sk+3, . . .}

To get rapid increasingness, it is necessary to check that for any l > k,

sl = {sk, sk+1, . . . , sl−1, sl, sl, . . .} � {sk, sk+1, . . . , sl, sl+1, sl+1, . . .} = sl+1

For this, first take a sequence (in S)

t1 ≤ t2 ≤ · · · ≤ t

(where t is the supremum of the sequence satisfying sl+1 ≤ t) and, towards establishing

that there is a j with sl ≤ tj, consider p � sl (in Sl). Then p � sl+1 and since sl+1 ≤ t,

in any sequence {ti} equivalent to t, there is a j satisfying p � tj. Constructing the

supremum of {ti} from diagonal entries of subseqences (as was done to establish the

existence of suprema), then the tj just described (as t is the supremum of ti, it must

be equivalent to the diagonal sequence) is a term from tj, and p � tj, so sl ≤ tj.

Consequently, sl � sl+1, so the chosen sequence is rapidly increasing, leaving it to be

shown that its supremum is s.

To do this, take t ∈ S so that si ≤ t (for all i, continuing that si = {sk, sk+1, . . . , si, si, . . .},

and choose an eventually increasing sequence {ti} representing t (again, ti ∈ Si). Because

si � si+1, and si+1 ≤ t, there is a j in the increating part of t satisfying si � tj, so

s = {s1, s2, s3, . . .} � {t1, t2, t3, . . .} so s � t in S, and we have our rapidly increasing

sequence with supremum s.
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Now it remains to test the compatibility of ≤, �, and suprema with addition. For

suprema, consider that any s ∈ S can be represented as the supremum of an eventually

rapidly increasing sequence {s1, s2, . . .} with si in Si, so taking {si} to be an increasing

sequence in S with supremum s, we get the eventually rapidly increasing sequence {si}

with sup si = sup si and si ≤ si for every i. So for sequences {si} and {ti} in S, with

suprema s and t, take {si} and {ti} to be eventually rapidly increasing representative

sequences as above. By definition of addition on S, the sequence {s1 + t1, s2 + t2, . . .} is a

representative sequence for s+ t, and consequently the supremum for {si + ti} (recall the

argument used to construct eventually rapidly increasing sequences). Noting also that

si ≤ si and ti ≤ ti for all i in the rapidly increasing portion of both sequences, we have

si + ti ≤ si + ti, so:

s + t = sup{si + ti} ≤ sup{si + ti} ≤ sup si + sup ti = s + t

which gives equality of all entries in that sequence, and proves compatbility of suprema

with addition by giving

sup{si + ti} = sup si + sup ti

This is now useful for proving the compatibility of ≤ with addition; to do this, given

s1 ≤ t1 and s2 ≤ t2 in S, choose eventually rapidly increasing sequences {s1
i }, {t1i }, {s2

i },

and {t2i }, with s1
i , t

1
i , s

2
i , t

2
i ∈ Si. Replacing {s2

i } and {t2i } with subsequences so that by

the shared increasing part, s1
i ≤ s2

i , and t1i ≤ t2i for all i (which can be done because

{s1
i } - {s2

i } and {t1i } - {t2i }, and the sequences are eventually rapidly increasing —

because s1
i � s1

i+1, and s1 ≤ s2, there is a j in the rapidly increasing part so that
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s1
i � s2

j , and likewise for the ts), we get:

s1 + t1 = sup s1
i + sup t1i

= sup{s1
i + t1i }

≤ sup{s2
i + t2i }

≤ sup s2
i + sup t2i

= s2 + t2

i.e. s1 + t1 ≤ s2 + t2, as desired.

Now for the compatibility between addition and �, simply take s1 � s2 and t1 � t2

in S with eventually rapidly increasing representative sequences {s2
i } and {t2i } (s2

i , t
2
i ∈

Si) for s2 and t2. Because s1 � s2, considering only the increasing part, we get that

eventually s1 ≤ s2
i , and likewise t1 ≤ t2i , so

s1 + t1 ≤ s2
i + t2i � s2

i+1 + t2i+1 ≤ s2 + t2

which yields the desired s1 + t1 � s2 + t2.

So all the conditions being met, the quotient semigroup S, taken from the quotient

of the preordered semigroup S ′ of sequences in

S1 → S2 → S3 → · · ·

is an ordered semigroup in the category Cu.

4.3 Universal property of the candidate inductive

limits

The semigroup S having been demonstrated to be an ordered semigroup in C, it still

remains to show that it is the inductive limit of the sequence S1 → S2 → · · · . In
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particular, we need that for every ordered semigroup T in C, and every sequence of maps

Si → T (compatible in the sense that the map Si → T is equal to the composition of the

maps Si → Si+1 and Si+1 → T ), there is a unique compatible map S → T making the

following diagram commutative:

S1 → S2 → · · · → S

↘ ↘ ↓!

T

Proposition 4.6. Given a sequence S1 → S2 → · · · in C, there are maps Si → S which

are compatible with the sequence maps in that they form a commutative diagram. Further,

assuming the existence of T ∈ C with similarly compatible maps, there is a well-defined,

map φ from S to T , which is compatible with both sets of maps (i.e. Si → S → T agrees

with Si → T ).

Proof. This first requires the existence of maps for each i, Si → S, compatible with the

maps Si → Si+1 in the sense described for the maps to T . Considering the map which

takes s ∈ Si to the class of the sequence (a1, a2, . . . , ai−1, s, s, . . .) ∈ S, (where the an

can be any elements from the appropriate semigroups) compatibility follows immediately

from the preservation of order (and consequently of compact containment) by morphisms

in C, and the definition of the preorder relation on S ′.

Given T with the compatible maps from Si, a map φ : S → T can be constructed, first

by considering only eventually rapidly increasing representative sequences for elements

of S. In particular, take the sequence {s1, s2, . . .}, si ∈ Si to represent s ∈ S (with

sk � sk+1 � · · · ). Now consider mapping s to the supremum of the sequence constructed

from the image of the rapidly increasing part of {si}. To see that this mapping is well

defined, consider a second eventually rapdily increasing sequence {s′l, s′l+1, . . .} also with

supremum s. Because for i ≥ k, si � si+1 ≤ s and {s′i} is an eventually increasing

sequence with a supremum of at least s, there is a j in the increasing part of {s′i} so
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that s′j ≥ si; similarly, each s′i also admits a j with sj ≥ s′i (again in increasing parts).

Because the maps from Si → T are C morphisms, they preserve order, so the intertwining

of {si} and {s′i} gives the same supremum for the two sequences, making the map from

S to T well defined.

It now remains to show the compatibility between Sk → T and Sk → S → T . For

s ∈ Sk, the image chosen is the class of {s, s, . . .}, but this is not necessarily rapidly

increasing. Taking {r1, r2, . . .} to be a rapidly increasing sequence in Sk with supremum

S, we get the sequence {0, 0, . . . , ri, ri+1, . . .} (i.e. rj in th jth place for j ≥ k and 0 for

all other entries), is an eventually rapidly increasing sequence, with rapidly increasing

part {ri}i≥k, and whose supremum (for the rapidly increasing part) in Si is s (equivalence

follows from all entries in the rapdily increasing part of {ri} being way less than s, so

anything way less than one of them would also be way less than s; and because the

sequence increases to s, so any q � s would be less than one of its elements, and way less

than the next). Now the image in T of the rapdily increasing portion of this representative

of s is just the image of the rapidly increasing sequence {ri}i≥k, which has supremum s

in Si for i ≥ k and also in T , because the C morphisms preserve suprema of increasing

sequences, and the map from Sk to each of these semigroups is just such a morphism.

Now having the desired compatibility of the maps, to get S as an inductive limit for

S1 → S2 → · · · it remains only to show that φ is in fact a C morphism from S to T , i.e.

that it preserves addition, preserves the order relation, preserves suprema of increasing

sequences, and preserves the � relation.

Theorem 4.7 (Coward, Elliott, Ivanescu). The map φ is a C homomorphism. Con-

sequently, S is the inductive limit of S1 → S2 → · · · , and therefore, inductive limits exist

in C.

Proof. For addition, consider two eventually rapidly increasing sequences {r1, r2, . . .}
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and {s1, s2, . . .}, and let k be the smallest value by which both of these sequences and

their sum have become rapidly increasing. For each i ≥ k, the image in T of the sum

ri + si from Si, is the sum of the images of ri and si, since the map Si → T is a C

morphism. Also, being such a morphism, it preserves suprema of increasing sequences so

φ(si + ti) = φ(si) + φ(ti), so addition is preserved.

To check preservation of suprema by φ, given an increasing sequence {s1, s2, . . .} of

elements of S, choose eventually rapidly increasing representatives {sn
i } for each sn, as

in the proof of the existence of suprema in S, so that there is a k such that i ≥ k + 1

gives sn
i � sn+1

i as well as sn
i � sn

i+1, and take the diagonal sequence {si
k+i} as a

rapidly increasing sequence which represents sup si. Because for any sn
i with i ≥ k + 1,

m = max(k− i, n) gives sm
k+m ≥ sn

i , the sup{si
k+i} ≥ sn for any n, so the supremum in T

of the images of the diagonal elements will be the supremum of the image of the sequence

{sn}.

Preservation of order by φ follows from the argument used to show that the map is

well defined, so it remains only to show that φ also preserves the � relation.

Take {r1, r2, . . .} and {s1, s2, . . .} to be eventually rapidly increasing sequences with

ri, si ∈ Si, so that {ri} � {si}. Taking r = sup ri and s = sup si (in S), note that

r � s gives the existence of some j in the rapidly increasing part of {si} so that r ≤ sj.

Because φ already preserves order, we also have φ(r) ≤ φ(sj) (where it has already been

established by compatibility that φ(sj) is also the image of sj under the map Sj → T ).

Considering also that the map Sj+1 → T is a C morphism preserving �, and particularly

sj � sj+1, and that the preservation of suprema by φ gives sj+1 ≤ s, we get, in T

r ≤ sj � sj+1 ≤ s

so r � s as desired, φ is a C morphism, and

lim
→

Si = S
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It should be noted that the semigroups in Cu needn’t be positive (i.e. have 0 as their

minimal element), though the Cuntz semigroup of any C∗-algebra is positive. This will

be discussed further after it has been verified that the Cuntz semigroup can actually be

considered as a functor into it.



Chapter 5

A Strikingly similar functor

Examining the category C in light of the Cuntz semigroup as already defined, the question

becomes how to prove that the given equivalence classes of positive elements, with their

order relation and addition, constitute an object in C. Indeed, it is even problematic

to find suprema for all increasing sequences in the case of stable algebras (in unital

algebras, with the positive elements taken from M∞(A), it’s even worse: the increasing

sequence of direct sums of n copies of 1A already has no supremum!). Even just finding

the supremum of Cuntz classes of two arbitrary positive elements seem unmanageable,

let alone an entire countable set.

Consequently, it makes sense to consider an alternate formulation for the Cuntz semi-

group, with which it is easier to demonstrate the desired properties, and demonstrate

that it is (close enough to) the established semigroup.

5.1 Defining the map

In order to find such a formulation, it helps to draw an analogy to the Murray-von Neu-

mann semigroup. Particularly, that the Murray-von Neumann semigroup of equivalence

37
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classes of projections in M∞(A) is isomorphic to the semigroup of algebraically finitely

generated projective Hilbert C∗-modules over A. Considering that the isomorphism be-

tween the two formulations of the Murray-von Neumann semigroup, maps a class of

projections to the class of modules generated by those projections, the Cuntz semigroup

ought to map equivalence classes of positive elements to some sort of equivalence classes

of Hilbert C∗-modules generated by those elements.

The initial consideration, given this analogy, would be to take the isomorphism classes

of all algebraically finitely generated Hilbert A-modules (where a Hilbert A-module is

taken to mean a Hilbert C∗-module over A). This however, runs into a few immediate

problems. The first of these problems is that an increasing sequence of such modules,

each with more generators than the last, could quite easily fail to have a finitely generated

supremum (consider increasing classes of projections on the algebra K of compact opera-

tors). The second of these problems is that while the Murray-von Neumann equivalence

relation on projections is defined directly enough that it could admit distinct projections

p and q with p - q, q - p, and p � q (and in fact does in the Cuntz algebras On, n ≥ 2),

the definition of Cuntz equivalence in terms of the preorder relation, requires that if a - b

and b - a, then a ∼ b.

To solve the first of these problems, we can consider countably generated (rather

than algebraically finitely generated) Hilbert A-modules, and for the second we could

consider the following notion of compact containment for Hilbert A-modules; that closed

submodule E of the Hilbert A-module F is compactly contained in F (denoted E ⊂⊂

F ) iff there is a compact, self-adjoint endomorphism of F which acts as the identity

upon E. The preorder relation E - F is then defined to hold iff every compactly

contained submodule of E is isomorphic to a compactly contained submodule of F (which

is pretty obviously a preorder, following from taking the submodules themselves, and from

composing the isomorphisms to get reflexivity and transitivity respectively).
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Before passing to the space of equivalence classes under the relation induced by thie

preorder, a few checks are in order to ensure that this quotient is in fact a reasonably

well-behaved semigroup (in that if E is a submodule of F , then their equivalence classes

[E] and [F ] satisfy [E] ≤ [F ]).

Proposition 5.1. If E and F are Hilbert C∗-modules over a C∗-algebra A, and E ⊆ F ,

then E - F (and consequently their Cuntz equivalence classes [E] and [F ] satisfy [E] ≤

[F ]).

Proof. Taking E0 to be compactly contained in E, we have E0 ⊆ E ⊆ F , and a compact

endomorphism on E which acts as the identity upon E0; considering the endomorphism

on F which is the identity on E, and otherwise projects on to E, so that it is 0 on

the quotient F/E, and composing it with the compact endomorphism on E that gives

E0 ⊂⊂ F , we get a compact endomorphism on F , which acts as the identity on E0, so

E0 ⊂⊂ F , giving E - F .

The good behaviour of the preorder relation with respect to inclusion, having been

established, it remains to show that the quotient semigroup is in fact a semigroup, and

further, is an object in C. This requires some preliminaries, where the semigroup is just

considered as an ordered set. In addition, a (temporary) substitution for the compact

containment order needs to be made.

Definition We will say that [E] is concretely compactly contained in [F ], denoted

[E] ⊂⊂ [F ] iff there is an A-module F ′ satisfying [E] ≤ [F ′] and F ′ ⊂⊂ F .

This notion of compact containment will be used on the ordered set of equivalence

classes of Hilbert A-modules instead of the order-theoretic notion (at least until they are

proven to be equivalent). The first such use of this relation will be on the the following

object:
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Definition We will denote by Cu(A) the ordered set (which we will later show to be

a semigroup) of equivalence classes of countably generated Hilbert A-modules. We will

also (eventually) call it the stable Cuntz semigroup, or the module form of the Cuntz

semigroup.

And this object first appears in the following result:

Proposition 5.2. The concretely rapidly increasing sequence [E1] ⊂⊂ [E2] ⊂⊂ · · ·

of equivalence classes of countably generated Hilbert A-modules has a supremum in the

ordered set, Cu(A) of equivalence classes of countably generated Hilbert A-modules.

Proof. The concrete rapid increasingness of {En} gives, by definition of concrete compact

containment, a sequence of countably generated Hilbert A-modules: E ′
2, E

′
3, . . . satisfying

E ′
n ⊂⊂ En for every n ≥ 2, and [En] ≤ [E ′

n+1] for every n ≥ 1. Noting that E ′
n ⊂⊂ En

implies E ′
n ⊆ En, giving [E ′

n] ≤ [En], we get that the concretely rapidly increasing

sequence {[En]} is in fact an increasing sequence (and so this proposition is actually a

special case of the property that increasing sequences in C converge to a supremum), and

further, that we have the intertwining sequence

[E1] ≤ [E ′
2] ≤ [E2] ≤ [E ′

3] ≤ [E3] ≤ · · ·

which gives that {[En]} and {[E ′
n]} must have the same supremum.

Noting that E ′
n ⊂⊂ En, the definition of the order [En] ≤ [E ′

n+1] gives that E ′
n must be

isomorphic to a compactly contained submodule of E ′
n+1 (for all n ≥ 2). Consequently, we

have a sequence of isometric A-module maps which preserve the A-valued inner product:

E ′
2 → E ′

3 → E ′
4 → · · ·

where the image each module is compactly contained in the next. This introduces the

possibility that the inductive limit E = lim→En provides the supremum [E] for the
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sequences. Transitivity of compact containment, and isometry of the inclusion maps

already give that [E] is an upper bound for {[E ′
n]} (and therefore {[En]}), so it remains

to show that if [En] ≤ [F ] for some countably generated Hilbert A-module F and every

n, then [E] ≤ [F ].

Choosing such an F , take G to be a countably generated Hilbert A-module such that

G ⊂⊂ E. The compact containment gives that there must be a G′ with G ∼= G′ ⊆ E

and a compact self-adjoint endomorphism a on E which acts as the identity on G′.

Noting that a2 is positive (and still acts as the identity on G′), we can use functional

calculus to take b to be a function on a so that (b − ε)+ is the identity on G′. Using

functional calculus, we can also construct another compact self-adjoint endomorphism

c, with cb = bc = b. Noting that the C∗-algebra of compact endomorphisms on E

can be expressed as the inductive limit of the C∗-algebras of compact endomorphisms

on En ⊆ E, we can construct a sequence {cn} of compact endomorphisms on each of

E ′
n, which converges to c. This gives that cnbcn converges to cbc = b, so for ε > 0,

we have an n with ||cnbcn − b|| < ε. Then by Lemma 2.4, there exists a compact

endomorphism d so that dcnbcnd
∗ = (b − ε)+. Noting the compact endomorphisms on

any of the building block modules constitute a hereditary subalgebra of the C∗-algebra

of compact endomorphisms on E, then cnbcn arises from a compact endomorphism on

E ′
n just as cn does, and moreover, so does its positive square root g. Since this gives

(dg)(dg)∗ = (b− ε)+, we get that the partial isometry in the bidual of the C∗-algebra of

compact endomorphisms on E, arising from the polar decomposition of dg determines an

isomorphism between a submodule of En, and the submodule of E generated by (b− ε)+

(namely, the closure of the range of (b − ε)+. Since (b − ε)+ acts as the identity on G′,

G′ is a submodule of the submodule generated by (b− ε)+, and therefore isomorphic to

a submodule of (the submodule of) E ′
n.

Now since any compactly contained submodule of E ′
n is isomporphic to a compactly
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contained submodule of F , by the assumption that F is a supremum for {E ′
n}, then

(G ∼=)G′ ∼= G′′ ⊆ F , with the necessary compact endomorphism on F . Thus arbitrariness

of G ⊂⊂ E gives [E] ≤ [F ], so [E] is a supremum for {En} as desired.

Showing next that each object in Cu(A) is the limit of a concretely rapidly increasing

sequence, this last proposition will yield suprema for general increasing sequences rather

quickly, so

Lemma 5.3. For any [E] ∈ Cu(A), the set of [F ] with [F ] ⊂⊂ [E] is upward directed

(with respect to concrete compact containment) and contains a concretely rapidly increas-

ing sequence with supremum [E].

Proof. Given a countably generated Hilbert A-module, E, take {ξn} to be a generating

sequence for E with ||ξi|| = 2−i. Noting that ξiξ
∗
i : ζ 7→ ξi〈ξi, ζ〉 is a positive endo-

morphism on E, the sum
∑

ξiξi∗ must be a strictly positive element of the algebra of

compact endomorphism on E (note that if f is a positive functional, zero on ξiξ
∗
i for

all i, then ξiaa∗ξ∗i ≤ ||a||2ξiξi∗ gives the corresponding inner product on E to be zero

on ξiA for every i, and therefore zero on all of E. Consequently f is zero on every ζζ∗,

and zero on the entire algebra of compact endomorphisms on E. Thus, the series
∑

ξiξ
∗
i

and functional calculus allow us to construct a countable approximate unit {un} for the

C∗-algebra of compact endomorphisms on E such that un+1un = un for every n. Then

the increasing sequence

E1 = u1E ⊆ E2 = u2E ⊆ · · · ⊆ E

has the properties that En ⊂⊂ En+1 for all n, and that
⋃

En is dense in E. Consequently,

{[En]} is a concretely rapidly increasing sequence with supremum [E], by the previous

proposition. Further to this, the proof of the proposition gives that for any [G] ⊂⊂ [E],

there is an [En] in the sequence with [G] ⊂⊂ [En]; taking the larger n for any two such
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classes of modules, provides the upward directedness of the set of such [G] and completes

the proof.

Lemma 5.4. Any increasing sequence in Cu(A) has a supremum.

Proof. Given a sequence [E1] ≤ [E2] ≤ · · · in Cu(A), we have for each representative Ei

a sequence:

Ei1 ⊂⊂ Ei2 ⊂⊂ · · ·Ei

with the additional condition that

[Ei] = supj[Eij]

Noting that for any i, n, Ein ⊂⊂ Ei - Ei+1, we have that Eij is isomorphic to a compactly

contained subobject of Ei+1 and further, because Ei+1 is the limit of the sequence Ei+1,j

there is some m so that Ein is isomorphic to a compactly contained subobject of Ei+1,m.

Thus, we can choose mn so that

[E11] ⊂⊂ [E2,m1 ]

[E12], [E2,m1 ] ⊂⊂ [E3.m2 ]

[E13], [E2,m1+1], [E3,m2 ] ⊂⊂ [E4,m3 ]

[E14], [E2,m1+2], [E3,m2+1], [E4,m3 ] ⊂⊂ [E5,m4 ]

i.e. that each [En+1,mn ] compactly contains [En,mn−1 ] as well as one new term from each

sequence [Eij] for each i < n. This then provides a concretely rapidly increasing sequence

[E11] ⊂⊂ [E2,m1 ] ⊂⊂ [E3,m2 ] ⊂⊂ · · ·

which, because every sequence {[Eij]}j contribues a new term to the terms concretely

compactly contained by each [En+1,mn ] (for each n ≥ i), is eventually greater than any

[Eij]. Additionally, each term of this sequence is majorized by some [Ei]. These combined
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with the proposition that every concretely rapidly increasing sequence has a supremum,

provide a supremum for {[En+1,mn ]} which is also the supremum for {[Ei]}. Thus we

have suprema for all increasing sequences in Cu(A).

At this point, we have enough framework on the concrete compact containment rela-

tion to prove that it is equivalent to the abstract compact containment relation �.

Lemma 5.5. Given two equivalence classes of modules [E], [F ] ∈ Cu(A), [E] ⊂⊂ [F ] iff

[E] � [F ]. Additionally, given [E] ∈ Cu(A), the set of elements [G] satisfying [G] � [E]

is upward directed, and admits a rapidly increasing sequence with supremum [E].

Proof. To check that [E] ⊂⊂ [F ] gives [E] � [F ], take [F ′] as above, and take a sequence

[F1] ⊂⊂ [F2] ⊂⊂ · · · with a supremum sup[Fn] ≥ [F ] Following the construction from

Proposition 5.2, we can construct a sequence [F ′
n] with [F ′

n] ≤ [Fn], [Fn] ≤ [F ′
n+1] and

F ′
1 ⊆ F ′

2 ⊆ · · ·

in which case, sup[Fn] can be expressed as the class of the inductive limit of F ′
n (using

the inclusion maps). We recall that any concretely compactly contained subobject of an

inductive limit can be expressed as a subobject of a finite stage object F ′
n for some n

Recalling that [E] ≤ [F ′] with F ′ ⊂⊂ F and [F ] ≤ sup[Fn], take F ′′ isomorphic to

F ′ with F ′′ ⊂⊂ lim→ F ′
n. Then F ′′ is necessarily a subobject of some F ′

n. This gives

[E] ≤ [F ′′] ≤ [F ′
n] so that [E] ≤ [F ′

n] ≤ [Fn]. This is the eventual majorization of [E] by

the sequence with a supremum of at least [F ], as required for [E] � [F ].

To prove the reverse direction, taking that [E] � [F ], and recall that F can be

expressed as the limit of a sequence

F1 ⊂⊂ F2 ⊂⊂ · · · ⊂⊂ F

Noting that {[Fn]} is an increasing sequence with supremum at least [F ], then there is a



Chapter 5. A Strikingly similar functor 45

k such that [E] ≤ [Fk]. Since Fk ⊂⊂ F from the construction of the sequence, it follows

from the definition of concrete compact conatinment that [E] ⊂⊂ [F ].

Consequently, by Lemma 5.3, we also have that any element in Cu(A) can be ex-

pressed as the supremum of a rapidly increasing sequence, and that the set of elements

it compactly contains, is upward directed.

Now in order to have Cu(A) as an ordered semigroup, rather than merely an ordered

set, it is still necessary that addition (i.e. direct summation) be compatible with the

preorder relation on the Hilbert modules.

Lemma 5.6. Cu(A) is an ordered semigroup, with the addition operation arising from

direct summation of Hilbert A-modules. In other words, if E1, E2, F1, and F2 are Hilbert

A-modules satisfying E1 - F1 and E2 - F2, then E1 ⊕ E2 - F1 ⊕ F2.

Proof. Take E to be a compactly contained subobject of E1⊕E2, i.e. E ⊂⊂ E1⊕E2. In

fact, upward directedness of compactly containe dsubobjects of E1⊕E2 gives that there

is an E ′ with E ⊂⊂ E ′ ⊂⊂ E1 ⊕ E2. Now taking E1 and E2 to be the limits of rapidly

increasing sequences of compactly contained subobjects:

E1
1 ⊂⊂ E2

1 ⊂⊂ · · · ⊂⊂ E1

E1
2 ⊂⊂ E2

2 ⊂⊂ · · · ⊂⊂ E2

and note that E1 ⊕ E2 is the limit of the rapidly increasing sequence of submodules

E1
1 ⊕ E1

2 ⊂⊂ E2
1 ⊕ E2

2 ⊂⊂ · · · ⊂⊂ E1 ⊕ E2

Noting that Lemma 5.5 gives [E ′] � [E1 ⊕ E2] (because E ⊂⊂ E1 ⊕ E2), and that

{[En
1 ⊕En

2 ]} is an increasing sequence with a supremum of at least [E1 ⊕E2], so there is

a k satisfying that [E ′] ≤ [Ek
1 ⊕Ek

2 ]. Thus we have, by compact containment of E in E ′,

that E is isomorphic to a compactly contained subobject of Ek
1 ⊕ Ek

2 .
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Now because we have E1 - F1 with Ek
1 ⊂⊂ E1, then there is a F ′

1 ⊂⊂ F1, which is

isomorphic to Ek
1 . Similarly, we have Ek

2
∼= F ′

2 ⊂⊂ F2. Composing the direct sum of

the isomorphisms between Ek
i and F ′

i with the isomorphism between E and a compactly

contained subobject of Ek
1 ⊕ Ek

2 , the image of E under this composition is a compactly

contained subobject of F ′
1⊕F ′

2; compact containment being transitive, it is also compactly

contained in F1⊕F2, giving E1⊕E2 - F1⊕F2 as desired, and enabling Cu(A) to be well

defined as an ordered semigroup.

Now that Cu(A) is an ordered semigroup with an additional (order theoretic) compact

containment relation, it stands to verify that it is an object in C.

Theorem 5.7 (Coward, Elliott, Ivanescu). The equivalence classes of countably gen-

erated Hilbert A-modules forms an object in C for any C∗-algebra A (which we’ll denote

by Cu(A)). In particular

1. given equivalence classes of modules [E1], [E2], [F1] and [Y2] satisfying [E1] ≤ [F1]

and [E2] ≤ [F2], then [E1 ⊕ E2] ≤ [F1 ⊕ F2]

2. Cu(A) has a zero element

3. every increasing sequence in Cu(A) has a supremum in Cu(A)

4. every element in Cu(A) can be expressed as the supremum of a rapidly increasing

sequence [E1] � [E2] � · · ·

5. the operation of passing to suprema is compatible with addition, i.e. sup([Ei] +

[Fi]) = sup([Ei]) + sup([Fi])

6. the relation � is compatible with addition, i.e. [E1] � [F1], [E2] � [F2] gives

[E1] + [E2] � [F1] + [F2].
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Proof. To get the first property, just take the class of the module {0}. The second

and third properties follow from Lemma 5.4 and Lemma 5.5 respectively. Thus it only

remains to show that the relation �, and the operation of passing to suprema, are both

compatible with addition.

Given two increasing sequences {[En]} and {[Fn]}, with suprema E and F respectively,

recall that both [E] and [F ] can be represented by the inductive limits of increasing

sequences {E ′
n} and {F ′

n} of modules, and that these sequences intertwine with {[En]}

and {[Fn]}, giving identical suprema (also, their direct sums intertwine by compatibility

of order with addition). Further, the inductive limit of the direct sums E ′
n ⊕ F ′

n is

necessarily the direct sum of the limits of the individual sequences. Noting that the

suprema of the classes of the modules in this case are the classes of the limits we get

sup[En]⊕ sup[Fn] = sup[E ′
n]⊕ sup[F ′

n] = sup([E ′
n]⊕ [F ′

n]) = sup([En]⊕ [Fn])

which is the desired compatiblity condition.

For the compatiblity of compact containment with addition, we recall that compact

containment is equivalent to concrete compact containment, and check that [E1] ⊂⊂ [F1]

and [E2] ⊂⊂ [F2] give [E1 ⊕ E2] ⊂⊂ [F1 ⊕ F2]. Taking F ′
1 and F ′

2 with [Ei] ≤ [F ′
i ] and

F ′
i ⊂⊂ Fi, it follows immediately that [E1]⊕ [E2] ≤ [F ′

1]⊕ [F ′
2] and F ′

1 ⊕ F ′
2 ⊂⊂ F1 ⊕ F2,

so the compatibility condition is satisfied.

Noting that the conditions in the last proof are not exactly the conditions given in

Chapter 4, but are equivalent to them (simply ignore the stubs of the sequences that are

not yet (rapidly) increasing), we have that Cu(A) considered as an ordered semigroup, is

an object in C and will henceforth use the notation Cu(A) to refer to this object (rather

than the ordered set).
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5.2 Functoriality

Having that the construction Cu(A) can be seen as a map taking C∗-algebras to objects in

C, it stands to reason that C∗-algebra homomorphisms may be mapped to C-morphisms,

in such a way as to provide that Cu is a functor from the category of C∗-algebras to C.

First, we need a morphism map, so given a C∗-algebra homomorphism φ : A → B,

and a Hilbert A-module EA, set [Cu(φ)](EA) to be the Hilbert B-module defined by

completing (EA)⊗A (AB) with respect to the inner product

〈
∑

ξi ⊗ bi,
∑

ξ′j ⊗ b′j〉B =
∑
i,j

b∗i 〈ξi, ξ
′
j〉Ab′j,

where the homomorphism φ enables us both to consider B as a left A-module (where the

action of a ∈ A on B is left multiplication by φ(a)). Noting that the tensor product is

a universal bilinear map, considering E to be aA, and a′ ∈ E, the universal property on

the map a′ ⊗ b 7→ φ(a′)b ∈ B gives that the tensor product (EA)⊗A (AB) is isomorphic

to the B-module φ(a)B, so the functorial images of homomorphisms are exactly what

would be expected to agree with a positive element formulation of the semigroup.

Noting that when EA is countably generated, [Cu(φ)](EA) is also countably generated,

it remains to show that the candidate morphism Cu(φ) is a C-morphism; i.e. that it

preserves the additive and order structure.

For this, note that given a Hilbert A-module morphism EA → FA, the construction

above admits a Hilbert B-module morphism (EA) ⊗A (AB) → (FA) ⊗A (AB) (since the

A-module morphism preserves inner product, the definition of inner product provided

above will preserve the inner product in the B-module morphism; consequently, the

image morphism is isometric on the tensor product, and by continuity, isometric on their

completion, i.e. the the entire modules). In particular, this provides preservation of

isomorphisms, and of inclusions.

The inclusions of interest are naturally, compact inclusions. Taking EA to be com-
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pactly contained in FA, we’ll need that the inclusion of EB in FB to admit a compact

endomorphism on FB which acts as the identity upon EB ⊆ FB. From the compact inclu-

sion of EA in FA, we can take an endomorphism t on FA which acts as the identity on EA.

In order to get that its push-forward image tB acts as the identity on EB, begin by requir-

ing that tB(η ⊗ b) =
(
t(η)

)
⊗ b, for η ∈ FA and b ∈ B. Because 〈tη, tη〉A ≤ ||t∗t||〈η, η〉A,

tB must be bounded. Replacing η with η1 ⊗ η2 ⊗ · · · ⊗ ηk ∈ FA ⊗ · · · ⊗ FA, a similar

construction provides that the resulting map is still bounded. This then allows us to

observe that if t is a sum of finite-rank endomorphisms ζζ∗, then so is tB; and likewise

for the limits of such finite rank endomorphisms. Consequently, when t is a compact

endomorphism, then so is tB, and so compact containment is preserved by this module

map.

With isomorphism and inclusion already preserved by the module map Cu(φ), the

addition of compact containment provides also preservation of the preorder used to con-

struct Cu(A) (said preorder simply being a construction of inclusions, isomorphisms, and

compact containment). The relation � being defined in terms of the preorder, it follows

that it is also preserved, thus Cu(φ) is a morphism in the category C. Cu(φ) being a nat-

ural morphism (note that the identity isomorphism from a C∗-algebra take each module

to the class of scalar multiples – to the extent that operators can be considered scalar –

of itself, i.e. itself), we get functoriality of Cu.

5.3 Continuity under inductive limits

Since this functor Cu is intended to serve as an equivalent to the established Cuntz

semigroup, but preserve inductive limits, it only makes sense to check that it does in fact

preserve inductive limits. To show this, given a sequence of C∗-algebras A1 → A2 → · · ·

with inductive limit A, we need to show that every Hilbert A-module E is equivalent to
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the supremum of the increasing part of an eventually increasing sequence of images of

ei ∈ Cu(Ai) in Cu(A).

Towards this end, note that Theorem 2.5 gives that if E is countably generated, it

must be isomorphic to a submodule of the direct sum
⊕∞A of countably infinitely many

copies of A, which we can consider as containing E itself (since isomorphic modules are

necessarily equivalent). Considering that A might not be countably generated, take A′

to be a countably generated closed submodule of A so that E ⊆
⊕∞A′ (which can be

done, since E is countably generated). Using G to denote
⊕∞A′, we get the following:

Proposition 5.8. There exists G containing E as above, and there is a sequence G1 ⊆

G2 ⊆ · · · ⊆ G of subobjects of G such that each Gn arises from the functorial push-forward

of some module in An to A.

Proof. Take such an G and note that since A′ ∩An is necessarily contained in the push-

forward of An (considered as a module over itself), we can consider the modules to be

right modules giving a sequence (A′∩A1)A, (A′∩A2)A, . . . as generating A′ as the closure

of its union (if it doesn’t, expand A′ to adjoin countably many elements of each Ai which

approximate the generators of A′; retaining that A′ is countably generated, and contains

E). G being the countable direct sum of copies of A′, Gn can then be taken as the sum

Gn =
⊕∞(A′ ∩ An)A.

Since the Gn in this sequence arise as modules on An, let’s use Gn to denote the

finite state modules, and (Gn)A to denote their images under the push-forward map to

Cu(A). Now, recalling that each compact endomorphism on G arises as a countable series

of elementary endomorphisms ξζ∗, and since every ξ, ζ ∈ G are approximated by some

element of (Gn)A, every compact endomorphism on G arises as the limit of some sequence

of compact endomorphisms on Gn. This allows us to move to the following:

Lemma 5.9. Given a Hilbert A-module F , there is an increasing sequence f1 ≤ f2 ≤ · · ·
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in Cu(A), with each fi arising from an element of Cu(Ai), with each fi ≤ fi+1 in Ai+1

and with sup fi = [F ].

Proof. Continuing with F taken to be a subobject of G, take h to be a strictly pos-

itive compact endomorphism on F and recall that it extends naturally to a compact

endomorphism on G. Using the sequence from the previous proposition, and taking the

push-forward images in A, we getthat G =
⋃

(G− i)A and that every compact endo-

morphism on G can be approximated (in norm) by some push-forward of a compact

endomorphism on some Gn. Thus we can take, for any compact endomorphism h on

G, a series of compact endomorphisms hn ∈ Gn (we’ll also use hn to denote their push-

forward images (hn)A in K(G)), with hn → h (in K(G)). Then taking ε > 0, and n so

that ||h− hn|| < ε, Lemma 2.4 gives

(hn − ε)+ = dhd∗

for some some compact endomorphism d over G. Moreover, recalling from the proof of

Lemma 2.4, the construction of d, we get that h
1
2 d∗dh

1
2 = yy∗ where y = v(hn−ε)

1
2
+ giving

yy∗ = vx∗xv∗ = (v|x|)(v|x|)∗ = xx∗ from the polar decomposition of x. Additionally, x

was defined to be equal to h
1
2
r er (the index r has been added here to represent the r > 1

chosen to define gr) which, depending on the choice of r, can give hr arbitrarily close to

h, and er arbitrarily close to a compact operator acting as the identity on h (both as r

is chosen close to 1). Thus h
1
2 d∗dh

1
2 = xx∗ = h

1
2
r e2h

1
2
r can be made arbitrarily close to h.

Let us say instead then, that h is within ε of h
1
2 d∗dh

1
2 ; also a compact endomorphism on

F . Once again using Lemma 2.4, we get a compact endomorphism e on F satisfying

(h− ε)+ = eh
1
2 d∗dh

1
2 e∗

Noting that the partially isometric part of dh
1
2 e∗ is an isometry from (h− ε)+F to

(hn − ε)+G with image (dh
1
2 e∗eh

1
2 d∗G)− ⊆ (hn − ε)+G, it follows that (h− ε)+F (a



Chapter 5. A Strikingly similar functor 52

compactly contained subobject of F ) is isomorphic to a compactly contained subobject

of (hn − ε)+G. This gives in Cu(A), that

[
(h− ε)+F

]
≤

[
(hn − ε)+G

]
.

Recalling that G is the closure of the union of {(Gn)A}, we get that each (hn − ε)+G is

the closure of the union of the increasing subobjects (hn − ε)+(Gk)A, each one of which

arises as the push-forward of the finite stage object (hn − ε)+(Gk)Al
where l = max(k, n).

Recalling that the supremum of a sequence of classes of modules with an increasing

sequence of representatives, is the class of the closure of the union of those representatives,

we get that [
(hn − ε)+G

]
= sup

k

[
(hn − ε)+(Gk)A

]
.

Putting this aside for a moment, and recalling that h is a strictly positive compact

endomorphism on F , we get that hF = F and, taking εm to be a sequence tending

strictly monotonically to 0 we additionally get

F =
⋃

(h− ε)+F

which by a similar argument to the one above gives, in Cu(A):

[F ] = sup
m

[
(h− ε)+F

]
. (5.1)

Returning to the examples increasing to G, and noting that the definition of h as strictly

positive on F gives F = hG, the construction of (hn − ε)+ = dhd∗ provides an isomor-

phism (namely the partially isometric part of the compact homomorphism h
1
2 d∗) between

(hn − ε)+G and a subobject of F . Taking the compact homomorphism arising from a

smaller ε, we get that the image of (hn − ε)+G in F is a compactly contained subobject,

so [
(hn − ε)+G

]
� [F ] (5.2)
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in Cu(A).

Now consider the secuence of classes of modules on the subsequence Ak1 → Ak2 → · · ·

of A1 → A2 → · · · described by

g′m =
[
(hnm − εlm)+(Gkm)A

]
, m = 1, 2, . . .

where the sequences {nm}, {lm}, and {km} are constructed as follows.

First, recalling the sequence {εm}, strictly monotonically decreasing to 0, use 5.2 to

choose n1 so that [
(h− ε2)+F

]
≤

[
(hn1 − ε2)+G

]
.

Since ε2 < ε1, it follows that (hn1 − ε2)+G ⊂⊂ (hn1 − ε2)+G, and consequently we have

compact containment of the equivalence classes (in the order-theoretic sense by its equiv-

alence with the concrete sense). This compact containment then allows k1 to be chosen

so that [
(hn1 − ε2)+G

]
≤

[
(hn1 − ε2)+(Gk1)A

]
.

The latter class being compactly contained in [F ] ((Gk1)A being a subobject of G), l2 can

then be chosen (considering that l1 = 1) so that

[
(hn1 − ε1)+(Gk1)A

]
≤

[
(h− εl2+1)+F

]
.

Now n2 can be chosen as above so that

[
(h− εl2+1)+F

]
≤

[
(hn2 − εl2+1)+G

]
.

and since εl2+1 < εl2 , compactness allows k2 to be chosen in a similar manner to k1 to get

[
(hn2 − εl2+1)+G

]
≤

[
(hn2 − εl2)+(Gk2)A

]
.

Now with l2 already having been chosen as a successor to 1, we see that this process

can be continued to obtain an increasing sequence g′m =
[
(hnm − εlm)+(Gkm)A

]
in Cu(A),
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which is intertwined with the increasing sequence f ′m =
[
(h− εlm+1)+F

]
. Noting that

5.1 gives [F ] as the supremum for {f ′m}, we get from the intertwining that [F ] is also

the supremum for {g′m}. Noting that g′m is the pushforward image of
[
(hnm − εlm)+Gkm

]
from Gkm , and taking fn = g′m whenever km ≤ n < km+1, we get that each fn arises from

an element of Cu(An), and that {fn} is increasing in (A), with supremum [F ]. Thus,

it remains only to show that for every n, fn ≤ fn+1 in Cu(An+1) (equivalently, that

g′m ≤ g′m+1 in Cu(Akm+1)).

Remembering {hm} to be increasing to h, and {εm} to be strictly decreasing to 0,

it follows that hnm − (hnm+1 − εlm+1)+ < εlm , and that the left side being positive from

the same monotonicity, the conditions of Lemma 2.4 are satisfied to give a compact

endomorphism d on Gnm+1 ⊆ Gkm+1 (which doesn’t require refinement, as the selection

of km so that hnm can act upon Gkm already requires km ≥ nm) and this endomorphism

satisfies

(hnm − εlm)+ = d(hnm+1 − εlm+1)+d∗.

Taking a partial isometric part as before, it follows that (hnm − εlm)+Gkm is isomorphic to

a subobject of (hnm+1 − εlm+1)+Gkm+1 , over Akm+1 , which gives g′m ≤ g′m+1 in Cu(Akm+1)

as required. Consequently the sequence {fn} has the desired properties.

Having now demonstrated Cu(A) to consist entirely of the equivalence classes of

suprema of increasing sequences on {Cu(An)}, we need only show that the order re-

lation defined on lim→Cu(Ai) is identical to the order relation on Cu(A) in order to

prove the main result of this thesis:

Theorem 5.10 (Coward, Elliott, Ivanescu). The functor Cu from the category of

C∗-algebras to C preserves inductive limits (i.e. if A1 → A2 → · · · has inductive limit A,

then Cu(A1) → Cu(A2) → · · · has inductive limit Cu(A)).

Proof. To get equivalence of the order relations, it sufficient to show that given e1 ≤ e2 ≤
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· · · and f1 ≤ f2 ≤ · · · with ei, fi ∈ Cu(Ai), then sup ei ≤ sup fi in Cu(A) iff, whenever

g � ei in Cu(Ai), there is a j ≥ i with g � fj in Cu(Aj).

Because Cu(A) is already established to be an object in C, we know that each ele-

ment can be expressed as the supremum of a rapidly increasing sequence and, through

a diagonal argument similar to those presented before, take the elements of the rapidly

increasing sequence to be the images of elements from the building block algebras. Con-

sqeuently, we can assume that the sequences {ei} and {fi} are rapidly increasing (by

replacement with a sequence having the same supremum). Moreover, we can take, for

each ei and fi, that ei = [Ei] and fi = [Fi], where Ei and Fi are Hilbert Ai-modules, and

also

E1 ⊂⊂ E2 ⊂⊂ · · · , F1 ⊂⊂ F2 ⊂⊂ · · ·

so we have

sup ei =
[
lim→(Ei)A

]
and sup fi =

[
lim→(Fi)A

]
.

Assuming that sup ei ≤ sup fi in Cu(A), we need to show that for any i, and g � ei

in Cu(Ai), there is a j with g � fj in Cu(Aj). To this end, let us also take such an i and

g. Then Lemma 5.5 provides that the concrete compact containment relation g ⊂⊂ ei

also holds; i.e. there is some G1 ⊂⊂ Ei over Ai, with g ≤ [G1]. Additionally, we can

use upward-directedness of compactly contained elements, and the existence of rapidly

increasing sequences in Cu(Ai) to obtain G2, G3 satisfying

G1 ⊂⊂ G2 ⊂⊂ G3 ⊂⊂ Ei over Ai.

Pushing this forward to the space of Hilbert A-modules, we get

G1
A ⊂⊂ G2

A ⊂⊂ G3
A ⊂⊂ (Ei)A

Noting that Lemma 5.5 provides [G3] ≤ [Ei] � sup ei ≤ sup fi, the definition of

(order-theoretic) compact containment provides a j with [G3] ≤ [Fj] in Cu(A).
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G2 being a compactly contained subobject of G3, the definition of the order relation on

Cu(A) then provides that it must be isomorphic to a compactly contained subobject (F ′
j)A

of (Fj)A. Additionally, with G1 ⊂⊂ G2, we know there to be a compact endomorphism

h on G2 which is the identity on G1 ⊂ G2. Moreover, it can be chosen to be positive and,

chosen with ε, so that (h− ε)+ acts as the identity on G1.

Since h is a positive element, and G2
A
∼= (F ′

j)A ⊆ (Fj)A, we can find a compact

homorphism x from G2
A to (Fj)A so that h = x∗x (particularly, the product of h

1
2 with

the isomorphism between the subobjects). Taking k ≥ max(i, j), we get that both Fj

and G2 can be pushed forward to Ak-modules. A homomorphism x′ can then be taken

between these Ak-modules whose push-forward approximates x in norm, in the algebra

of compact homomorphisms from G2
A to (Fj)A. Consequently, we have that x′∗x′ is close

to h in A, and that both such endomorphisms arise from compact endomorphisms on

G2
Ak

(possibly earlier, but we can push them forward). This then allows us to take that

they’re (almost as) close over Al for some l ≥ k, say within the ε chosen above (so that

(h− ε)+ actas as the identity on G1). Then because ||h−x′∗x′|| < ε, Lemma 2.4 provides

an endomorphism d so that

(h− ε)+ = d∗x′∗x′d (in K(G2
Al

).

Replacing x′ with x′d, we get x′ to be a homomorphism between G2
Al

and (Fj)Al
, where

x′∗x′ = (h− ε)+, which acts as the identity on G1
Al

.

Now restricting x′ to G1
Al

, its image in (Fj)Al
is necessarily isomorphic to it (from

x′∗x′ acting as the identity on G1
Al

), and further, x′x′∗ is a compact endomorphism on

(Fj)Al
which acts as the identity on this image. Thus, [G1] � [Fj] which, since [G1] was

arbitrarily chosen to be compactly contained in [Ei], provides [Ei] ≤ [Fj] as needed.

This leaves the reverse implication to be shown: suppose that whenever g is chosen

to that g � ei for some i, we get a j ≥ i admitting g � fj; we need that sup ei ≤ sup fi
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in Cu(A). To prove that sup ei ≤ sup fi, we need only show that for any ei, there is a

fj ≥ ei; to this end, take ei, and observe that since Cu(Ai) is an object in C, we can

construct an increasing sequence {gn} with gn � ei for every n, and ei = sup gn. Our

hypothesis then gives that gn � fj for every n in Cu(Ai), and by functoriality in Cu(A).

Consequently fj is an upper bound for {gn} in Cu(A), and since functoriality also gives

ei = sup gn in Cu(A), it follows that ei ≤ fj in Cu(A), so we are done.
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chapterComparing the semigroups

Now we have, for any C∗-algebra A, a semigroup Cu(A), a category C to which this

semigroup belongs, and some nice properties for this category, and for the functor Cu,

in addition to the established Cuntz semigroup W (A). Naturally, it makes sense to

compare the two semigroups and see whether or not Cu can reasonably be said to be a

Cuntz semigroup functor.

A cursory examination shows that if we hold ourselves strictly to the definition of

W (A), then Cu(A) and W (A) differ on the C∗-algebra C! To see this simply note that

W (C) = N, whereas Cu(C) is exactly the collection of isomorphism classes of complex

Hilbert spaces; one for each dimension in N, and also the countable dimensional spaceHC;

so we have Cu(C) = N∪{∞}. We can recall however, that this distinction was exactly the

distinction between W (A) defined as equivalence classes of positive elements in M∞(A),

and a hypothetical semigroup defined as equivalence classes of positive elements in A⊗K.

Moreover, this latter semigroup is isomorphic to W (A⊗K) (which is isomorphic to W (A)

when A is stable). Consequently, we can consider Cu(A) to be a stable Cuntz semigroup,

if we can demonstrate the semigroup isomorphisms

Cu(A) ∼= Cu(A⊗K) ∼= W (A⊗K).

Proposition 5.11. For any C∗-algebra A, Cu(A) is isomorphic to Cu(A ⊗ K), and

further, this isomorphism arises from a natural transformation.

Proof. Begin by considering the natural inclusion map A → A ⊗ e ⊆ A ⊗ K (for some

fixed, rank one projection e in K). Then because Cu is a functor, this induces a (natural)

morphism Cu(A) → Cu(A ⊗ K). Thus it is only necessary to demonstrate that this C

morphism is an isomorphism.

To do this, consider a countable collection of rank one projections {ei} in K, with

e1 = e, and whose direct sum acts as the identity upon K. Being rank one, all of these



Chapter 5. A Strikingly similar functor 59

projections are Murray-von Neumann equivalent, so the Hilbert A⊗K-module images of

A under the C homomorphisms induced by the C∗-algebra morphisms A 7→ A ⊗ ei, are

all isomorphic, and therefore Cuntz equivalent. Further, compatibility between direct

summation and Cuntz equivalence then gives that, for a family of A-modules {F i}, we

can take F i
j to be the image of the A-module F i under the map induced by A 7→ A⊗ ej

(roughly F i in the ej coordinate of an infinite row vector, which is zero elsewhere), and

get ⊕
i

F i
i =

⊕
i

F i
1

The cut-down of this latter module by the algebra A ⊗ e1 then provides an inverse

C morphism for the A 7→ A ⊗ e1 morphism and, since the latter is a morphism by

functoriality of Cu, and because the inverse works both ways, we have our isomorphism

between Cu(A) and Cu(A⊗K).

The first isomorphism having been proven, let us now move on to the second. For the

sake of clarity, we’ll observe that A⊗K is always stable, and cut down on the complexity

of the notation by assuming that A must be stable.

Theorem 5.12 (Coward, Elliott, Ivanescu). Given a stable C∗-algebra A, let φ be

the map taking each positive element a ∈ A to the right ideal aA, considered as a Hilbert

A-module. Then φ induces a bijection between W (A) and Cu(A) which preserves the

order relation in both directions. Further, the map from W (A) to Cu(A) induced by φ is

an (order) isomorphism between W (A) and Cu(A).

Proof. We’ll begin by showing the preservation of preordering in the forward direction:

take a, b to be positive elements in Mn(A) (but since A is stable, we can use the isomor-

phism between Mn(A) and A to find equivalent positive elements in A, and will just refer

to A from now on) with a - b. Recall that this means we have a sequence {xn} in A
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so that xnbx
∗
n converges to a. Because of this convergence, we can take, for each n, an

εn > 0 with ||xnbx
∗
n − a|| < εn and so that εn decreases to 0.

Now, by Lemma 2.4 we have, again for each n, dn so that dnxnbx
∗
nd
∗
n = (a − εn)+.

Recalling that (a−εn)+, which we’ll call an, is a continuous function on a (in the spectral

calculus), we have that {an} is an increasing sequence of continuous functions on a, with

limit a. This then gives that aA is the inductive limit, and therefore the supremum of the

increasing sequence a1A ⊆ a2A ⊆ · · · . Moreover the equivalence of concrete and order-

theoretic compact containment provide that any compactly contained subobject of aA

must be a compactly contained subobject of anA for some n. Additionally we have that,

because an = dnxnbx
∗
nd
∗
n, anA must be isomorphic to a subobject of bA; by this same

isomorphism, any compactly contained subobject of anA is compactly contained in bA,

which with the other compact containment we just demonstrated, gives that aA - bA as

desired.

Now we want preorder preservation in the reverse direction, so take a, b to be positive

in A so that aA - bA as Hilbert A-modules. To get this, take f to be a continuous,

positive, real-valued function on the spectrum of a, equal to zero in a neighbourhood of

zero provided that zero is in the spectrum of a), so that ||f(a) − a|| is small. Taking g

to be a continuous function on the spectrum of a, equal to 1 where f is nonzero, and

equal to 0 at zero. We have then that f(a)A is a submodule of aA and moreover that left

multiplication by g(a) is an endomorphism on aA which acts as the identity on f(a)A.

Thus f(a)A is compactly contained in aA and because aA - bA, is isomorphic to a

(compactly contained) submodule of bA.

From this isomorphism, we can get take the square root of f(a), and multiply it by a

partial isometry in A∗∗ representing the isomorphism, to get x so that x∗x = f(a), and

xx∗ generates the isomorphic submodule of bA. Moreover, with xx∗A as a submodule

of bA, we also get that there is a sequence {dn} so that bdn converges to xx∗, so x∗bdn
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converges to x∗xx∗, which as we’ll see in a moment, generates the same closed right ideal

as x∗x = f(a). In particular, we can modify dn to drop the trailing x∗ (multiplying it on

the right by an approximate inverse; recall that x is the product of a positive element

and a partial isometry, so we can take the adjoint of the partial isometry, and apply the

function gn(x) = max(x−1, n) to the positive part to get a convergent sequence x∗bdn

with our new dn) and get f(a) as the limit of x∗bdn. Recalling that this the follows

the form of Cuntz’s original defintion for the preorder relation on the Cuntz semigroup,

we get that f(a) - b. Since f can be chosen to get f(a) arbitrarily close to a, we can

construct a sequence {fn} of such f , satisfying ||fn(a)−a|| < 1
n
, and for each fn, we have

a sequence {xn
i } with ||xn∗

i bxn
i − fn(a)|| < 1

i
, we can take a diagonal subsequence {xn

n}

to get a - b as desired.

Preservation of the preorder in both directions having been shown, injectivity of the

map follows. Additionally, preservation of the addition operation holds trivially, so it is

now necessary only to verify that the map is surjective; i.e. that each countably generated

Hilbert A-module is equivalent (in this case, equivalence will follow from isomorphism)

to one that is generated, as a right ideal, by some positive element in A.

Taking a countably generated Hilbert A-module, E, Theorem 2.5 provides that it

is isomorphic to a direct summand of the countably infinite direct sum HA. Since A

is stable, the direct sum HA is isomorphic to A (considered as an A-module), and so

E, being a direct summand (and therefore closed submodule) of HA, is isomorphic to a

closed submodule E ′ of A.

E ′ then being a submodule of A, closure under A multiplication provides that it

is a right ideal, and further, it is a closed right ideal, being closed in its inner product

topology. Additionally, because E ′ is a submodule of A, and A is countably generated, E ′

is itself countably generated as both an A-module, and a right ideal; A being stable gives

then that E ′ is, in fact, isomorphic to a singly generated ideal (the single generator being
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the direct sum of the countably many generators). Taking e to be a generator for this

ideal, we recall that 2.7 gives any convergent sequence in the module to be expressible

with a common left factor. From this, we get that the closedness of the module can

be taken as arising from taking the closure of the ideal eA, so we can write E ∼= eA,

providing the desired equivalence, and establishing the isomorphism between Cu(A) and

W (A).

With this, we now have a framework in which the Cuntz semigroup can be taken

as a functor which preserves inductive limits (at least on the subcategory of stable C∗-

algebras). Additionally, we have a formulation of the Cuntz semigroup in terms of Hilbert

C∗-modules, which allows us to prove some results that would be impractical in the setting

of positive elements. Some of these results will follow in the next chapter.



Chapter 6

Additional results

6.1 The commutative case revisited

Now that the Cuntz semigroup has been defined in terms of modules, rather than positive

elements, we can more easily check whether the trivial subsemigroup U(C(X)) is in fact

the entire subsemigroup in certain well behaved cases. The motivation for this, is that

we can consider the Hilbert C(X)-modules as generalized vector bundles. In particular,

we have that they can be expressed as the direct sums of vector bundles over closed

subspaces of X.

Since every closed subspace of a 1-dimensional CW -complex is homeomorphic to

another CW -complex of dimension ≤ 1, and because every CW -complex Y of dimension

≤ 1 has K0(Y ) = Z, there ought to be no nontrivial vector bundles on any open subspace

of X. Consequently, W (C(X)) should be exactly the semigroup of trivial vector bundles

over open subspaces of X, i.e. U(C(X)).

Remark If X is a 1-dimensional CW -complex, then the Cuntz semigroup W (C(X))

appears to consist entirely of sums (and series) of classes of positive elements in C(X)

(i.e. equal to U(C(X))).

63
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As far as CW -complexes are concerned, this condition can probably be refined to a

necessary and sufficient condition; namely that X does not contain any open subspaces

Y , where Y is not homotopic to a 1-dimensional (or 0-dimensional) CW -complex. That

this condition is sufficient would follow from the homotopy invariance of K0 on all the

subspaces providing an argument somewhat like above. For necessity, we would consider

a open subspace Y without a suitable homotopic space as above. Then Y either is,

or contains as a subspace, a closed 2-manifold M . Because M is a closed 2-manifold,

its K0 can be expected to admit a Bott projection, which is not equivalent to a trivial

projection; consequently we would get a corresponding nontrivial element in the Cuntz

semigroup W (C(X)), so

Remark Given a CW -complex X, then W (C(X)) = U(C(X)) is likely equivalent to

the condition that X does not contain any open subspaces which are not homotopic to

a 1-dimensional CW -complex.

It’s also worth noting about the commutative case that the pushed forward images of

nontrivial elements to inductive limits provide much of the basis for the counterexamples

to K-theoretic classification of AH algebras.

6.2 Additional properties for semigroups in C

Another point to note is that in [2], C is defined so that its objects have zero as a minimal

element, while this is not the case for C as defined in this thesis. That zero is a minimal

element of Cu(A) for any C∗-algebra A is a trivial matter of taking xn = 0 for every n to

establish a comparison with the positive element preorder relation.

Slightly more interesting is that the compatibility of the order relation with addition

on objects in C prevents there being any torsion subsemigroups. This in turn provides



Chapter 6. Additional results 65

that an element less than 0 in such a semigroup will be greater than any of its (integer

≥ 2) multiples and so the only possible minimal element for such a semigroup is in fact

0.

Additionally, when the zero is a minimal element, any sequence increasing to an

element greater than or equal to it necessarily majorizes it at its first entry, and so

0 � 0 (though this must also hold in order for each element of the semigroup to be the

supremum of a rapidly increasing sequence and so provides little value aside from an

assurance that objects in C with zero minimal are well-defined).

We may also want to examine the conditions identified for isolating Murray-von Neu-

mann semigroup elements in the Cuntz semigroup, both by my coauthors and me in [2],

and by Toms and Perera in [14]. In the former, equivalence classes of projections (in a

C∗-algebra with real rank zero) are shown to be exactly those satisfying:

[p] � [p]

while the latter establishes them as satisfying (in a C∗-algebra with stable rank one):

∀z % p, ∃y so that [z] = [p] + [y].

In particular, since both these conditions identify projections in certain settings, are

they equivalent. In the compact (as opposed to finite matrix) setting, there is the obvious

counterexample of infinite elements. The only objects which majorize them are equivalent

to them and so they trivially satisfy the second condition. The first condition however,

fails to hold even in Cu(C), since the infinite element can be expressed as the limit of

any strictly increasing sequence of finite elements (none of which will majorize it, as is

needed to satisfy the first condition).

Even considering the non-stable case though, we have the example of Cu(C0(0, 1)),

for which the element associated with the characteristic function of (0, 1) itself satisfies

the second condition (subtracting 1 from a lower semicontinuous functions preserves its
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lower semicontinuity, and provides the other summand). Further, the increasing sequence

{χ( 1
n

, n−1
n

)} provides failure of the first condition.

The setting in which these counterexamples arise though, is suggestive that the com-

pact containment condition could be seen as analogous to being a compact set in a

topological space, while the summation condition would be analogous to being a closed

set. In this setting, we ought to expect that compactness implies closure, but the C

object structure doesn’t necessarily provide any Hausdorff type conditions, so no proof

(or possibly counterexample) is yet available.



Chapter 7

Further research

While there are plenty of opportunities to examine the structure of objects in C, to

establish details like e.g. whether a ‘compact’ element is necessarily ‘closed’ (in the sense

of the end of the last chapter), or whether the sum of a ‘non-compact’ element with any

other element is necessarily ‘non-compact’ (as in the case for the UHF algebra A with

K0(A) ∼= Q), there is even more to examine in terms of using the continuity of the functor

Cu under inductive limits to answer questions about C∗-algebras.

One question that naturally arises in the setting of inductive limits is how to deal with

the variety of available maps between the building blocks. In particular, many interesting

examples of AH algebras are constructed with point evaluations in the building block

maps. The choice of point may not appear in a significant manner in the K-theory, or even

the Murray-von Neumann semigroup (even at the building blocks), but the subsemigroup

U identified earlier would distinguish between points selected for evaluation. In light of

this, it may be worth investigating how these differences in point evaluations can be

smoothed out, e.g. by a small corner argument. Such work would then also shed more

light on the Cuntz semigroups of the C∗-algebras that Toms used as counterexamples for

K-theoretic classification.

67
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Additionally, given that the “trivial” subsemigroup U was shown to be the Cuntz

semigroup for commutative algebras with zero and one dimensional base spaces, it would

make sense to investigate whether a suitable analogue of this triviality property holds

for AF, AI, and AT algebras. Further, given that the base space can be identified with

the extrema on the simplex of traces, such an analogous property, having its origin in

base spaces, may very well hold for algebras that are merely tracially AF, tracially AI,

or tracially AT.

Another example that may warrant investigation is the Cuntz semigroup of the Jiang-

Su algebra Z (a calculation for which is given in [1] and [14], since Z is Z-stable). Given

the connections between Z-stability, dimension growth, and almost unperforation in the

Cuntz semigroup, Cu(Z) may bring some additional clarity to this connection. The catch

here is that the functor Cu does not seem to respect tensor products, so some sort of

theory of Cuntz semigroup tensor products would need to be properly developed (not

that this should seem too daunting – after all, it wasn’t that long ago that the Cuntz

semigroup didn’t respect inductive limits!).

In a similar vein of continuing to modify the category C, it may be possible to modify

the condition requiring the existence of suprema for all increasing sequences, to merely

require it for bounded increasing sequences (and correspondingly modify the functor Cu

to use finitely generated modules, instead of countably generated modules), in order

that the module-based map may agree with the positive element definition on non-stable

C∗-algebras.

Finally, it may be worth adapting some of the techniques for K-theoretic classifica-

tions of various types of AH algebra (in particular the techniques used in [6] and [4] may

be quite valuable) to develop a Cuntz-semigroup classification theory for all AH (and

possibly even ASH) algebras. Moreover, in light of the recovery of the Cuntz semigroup

functorially from the Elliott invariant in [1], such a result would also provide K-theoretic
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classification of all AH algebras with slow dimension growth. As AH algebras without

slow dimension growth have been proven to resist K-theoretic classification, such a re-

sult would provide a nice tidy resolution to the problem of classifying AH algebras with

K-theory.
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